NATIONAL AERONAUTICS AND SPACE ADMINISTRATION APOLLO 6 MISSION REPORT TRAJECTORY RECONSTRUCTION AND ANALYSIS M (NASA-TM-X-72166) APOLLC 6 MISSION REFORT: TRAJECTORY RECONSTRUCTION AND ANALYSIS (NASA) 97 p N75-70126 DISTRIBUTION AND REFERENCING This paper is not suitable for general distribution or referencing. It may be referenced only in other working correspondence and documents by participating organizations. MANNED SPACECRAFT CENTER HOUSTON, TEXAS September 1968 ## APOLLO 6 MISSION REPORT ## TRAJECTORY RECONSTRUCTION AND ANALYSIS Prepared by: TRW Systems Group Approved by Manager Apollo Spacecraft Program NATIONAL AERONAUTICS AND SPACE ADMINISTRATION MANNED SPACECRAFT CENTER HOUSTON, TEXAS September 1968 TRW NOTE NO. 68-FMT-669 # PROJECT APOLLO TASK MSC/TRW A-50 # APOLLO MISSION 6, AS-502 TRAJECTORY RECONSTRUCTION AND POSTFLIGHT ANALYSIS - VOLUME I 15 JULY 1968 Prepared for MISSION PLANNING AND ANALYSIS DIVISION NATIONAL AERONAUTICS AND SPACE ADMINISTRATION MANNED SPACECRAFT CENTER HOUSTON, TEXAS NAS 9-4810 Approved by W. O. Sirod W. P. Girod, Manager MSC/TRW Task A-50 Approved by J. E. Alexander Electronic Systems Laboratory Approved by . J. Skidmore, Manager Systems Evaluation Department Approved by. C. R. Coates Assistant Project Manager Mission Trajectory Control Program Approved by R. P. Parfen, Chief Mission Planning Support Office NASA Manned Spacecraft Center #### FOREWORD This report is submitted to the NASA Manned Space-craft Center in accordance with Task MSC/TRW A-50. 3 Contract NAS 9-4810. This report contains the postflight analysis performed in conjunction with the flight of Apollo Mission 6, AS-502, and is issued as a supplement to Section 3, Trajectory Section, of the Apollo 6 Program Mission Report. The report is issued in two volumes. Volume I contains details of the analysis and results obtained, including appendices. Volume II contains a listing of the "45 Day" best estimated trajectory (BET) for the AS-502 mission in the NASA Apollo Trajectory (NAT) format which is shown below. The listing is not generally distributed, but is available from NASA/MSC upon request. Requests should be made to: NASA/MSC Computations and Analysis Division Central Metric Data File Code ED-5, Bldg. 12, Room 133 Houston, Texas 77058 The listing is in four parts which are identified by time span covered and the corresponding accession number. | | Time Span (GET) | Accession No. | |----------|-----------------------|---------------| | Part I | 03:13:21 - 04:07:29 | 06-05923 | | Part II | 04:07:59 - 07:26:29 | 06-05924 | | Part III | 07:26:59 - 09:50:18 | .6 06-05925 | | Part IV | 09:50:20.6 - 09:57:20 | .6 06-05926 | #### NASA APOLLO TRAJECTORY INDEX | 1 | GMTR
SECONDS | GMTC
Seconds | GMTC
HOURS | GETS
SECONOS | | GRR
SECONDS | GMTC
HR MIN SEC | |------------|---------------------------------------|---------------------------------------|--------------------------------------|------------------------------------|---------------------------------------|--------------------------------------|---| | 9 | GEOCENTRIC
LATITUDE
DEGREES | GENNETIC
LATITUDE
DEGREES | GENDETIC
LONGITUDE
DEGREES | GEODETIC
ALTITUDE
FEET | INERTIAL VELOCITY FEET/SEC | INERTIAL
PATH ANGLE
DEGREES | INERTIAL
HEADING
DEGREES | | 15 | DECLINATION
DEGREES | ORBIT
RADIUS
FEET | RADIUS
DERIVATIVE
FEET/SEC | GEOCENTRIC
ALTITUDE
FFET | RELATIVE
VELOCITY
FEET/SEC | RELATIVE
PATH ANGLE
DEGREES | RELATIVE
HEADING
DEGREES | | .22 | (BLANK) | CENTRAL
ANGLE
DEGREES | HORIZON
Angle
Degrees | SUN THETA
DEGREES | SUN PHI
DEGREES | GROUND
RANGE
NMT | DISTANCE
TRAVELED
NMI | | 27 | X ECI | Y ECT
FFFT | Z ECT
FEET | XDOT ECT
FEFT/SEC | YDOT FCI
FEET/SEC | TOOT ECT
FEET/SEC | G SUR X
FEET/SEC**? | | 75 | X FCIG | Y ECTG
FEET | 7 FCIG
FFET | YDDT ECTO
FEET/SEC | YOUT ECIG | 7DOT FCIG
FFET/SEC | G SHR Y
FEET/SEC**2 | | 43 | N AGC
FEET | Y AGC
FEET | Z AGC
FEET | XDOT AGC
FEET/SEC | YDOT AGC
FEET/SFC | 700T AGC
FEFT/SEC | G SUR 7
FEFT/SEC**? | | 50 | P E SF
FEFT | Q ESF | R ESF
FFET | POOT ESF
FEET/SEC | QDOT ESF
FEFT/SEC | ROOT ESF | G TOTAL
FEFT/SEC+*2 | | 57 | U ECF
FFFT | V FCF
FEET | W FCF
FEET | UDDOT ECF
FEET/SEC**2 | VODOT ECF
FEET/SEC**2 | MDDOT ECF | DRBIT | | 64 | XDDOT ECI
FEET/SFC##2 | YPDOT ECT
FFET/SEC**2 | ZDDOT ECI
FEET/SEC##2 | XDDOT ECTG
FEET/SEC++2 | YDDOT ECIG
FEET/SEC**2 | ZDOOT ECIG
FEET/SEC**2 | REVOLUTION | | 71 | *DDOT AGC
FEET/SEC**2 | YDDOT AGC
FEET/SEC**2 | 7000T AGC
FEET/SEC##2 | APOGFE
RADIUS
FEET | PERIGEE
RADIUS
FEET | APOGEE
ALTITUDE
NMI | PERIGEE
ALTITUDE
NMI | | 73 | SEMITMAJOR
AXTS
FEET | SEMI-MINOR
AXIS
FEET | ECCENTRICITY | INCLINATION
DEGREES | RT. ASCEN.
NODE. AIRES
DEGREES | ARGUMENT
PERIGFE
DEGREFS | TRUE
Andmaly
Degrees | | A 5 | PERIOD
MINUTES | RT. ASCEN.
SAT., GRAWCH
DEGREES | RT. ASCEN.
SAT., ARIES
DEGREES | (BLANK) | RT. ASCEN.
NODE. GRNWCH
DEGREES | FCCENTRIC
ANDMALY
DEGREES | MEAN
Anomaly
Degrees | | 92 | (BLANK) | SEMT-LATUS
RECTUM
FEET | SPEED OF
SOUND
FEET/SEC | MACH
NUMBER | DYNAMIĆ
PRESSIRE
LB/FT**2 | REYNOLDS
NUMBER | TOTAL
ENERGY
FT-LBS | | 93 | ATMOSPHERIC
DENSITY
SLUGS/FT**3 | ATMOSPHER IC
PRESSURE
LB/IN** 2 | TEMPERATURE
Degrees
Rankine | YDDOT PIPA
FFET/SEC++2 | YDDOT PIPA
FEET/SEC**2 | 7000T PIPA
FFET/SEC**2 | PIPA TOTAL
ACCELERATION
FEFT/SEC**2 | | 1 04 | XDDT PIPA
FEET/SEC | YDOT PIPA
FEET/SEC | ZDOT PIPA
FEFT/SEC | PIPA TCTAL
VELOCITY
FFET/SEC | AERODYNAMIC
VELOCITY
FEET/SEC | AFRODYNAMIC
PATH ANGLE
DEGREES | AFRODYNAMIC
HEADING
Degrees | | 113 | XDOT ESF
WIND CORR.
FEET/SEC | YOUT ESF
WIND CORR.
FEET/SEC | 7DOT ESF
WIND CORR.
FEET/SEC | WIND
SPEED
FEET/SEC | WIND
DIRECTION
DEGREES | | | # CONTENTS | | | | Page | |-----|------|--|------------------------------| | 3. | | LLO MISSION 6, AS-502 TRAJECTORY ONSTRUCTION AND POSTFLIGHT ANALYSIS | 3-1 | | | 3.1 | Introduction and Summary | 3-1 | | | 3.2 | Ascent Analysis and SPS Burn Reconstruction | 3-1 | | | | 3.2.1 Analysis of IMU from Ascent Data | 3-1
3-3 | | | 3.3 | Orbit Analysis | 3-11 | | | | 3.3.1 Command Service Module Orbital Reconstruction (Coast Phase) | 3-11
3-18
3-20
3-21 | | | 3.4 | RTCC Trajectory Comparison | 3-24 | | | 3, 5 | Entry Trajectory Reconstruction | 3-31 | | ΑP | PEND | IXES | | | | A | RTCC COMPARISONS | A-1 | | • • | В | SUPPLEMENTARY DATA | B-1 | | | С | METHODS OF ANALYSIS AND PROGRAMS | C-1 | | » - 8 | | |-------|----| | | | | | 25 | | | 4 | ¥ | | | · | | | | | | | | | | # TABLES | | | Page | |------|--|------| | 3-1 | Apollo 6 IMU Errors | 3-4 | | 3-2 | SPS-1 Endpoint Conditions (t = 12218.0 seconds from GRR) APOLLO G&N Platform Coordinates | 3-11 | | 3-3 | CSM Orbital Fit Summary (Coast Phase) | 3-12 | | 3-4 | Residual Mean and RMS by Station and Data Type for Segments 1, 2, 3 | 3-14 | | 3-5 | S-band Trajectory Vector Comparisons for the Apollo 6 Mission | 3-15 | | 3-6 | State Vector Summary (BET) | 3-19 | | 3-7 | Maneuver Summary | 3-22 | | 3-8 | Data Mean and RMS | 3-23 | | 3-9 | Total Position and Velocity Differences (21:10:00 GMT) | 3-24 | | 3-10 | Summary of Radar Data for Apollo 6 (Coast Phase) | 3-26 | | 3-11 | RTCC Comparison Summary | 3-28 | | 3-12 | RTCC Comparison Summary for Special Vectors | 3-30 | | 3-13 | Entry Trajectory Comparison to Known Constraints | 3-32 | | B-1 | Summary of Observations | B-2 | | B-2 | C-band Station Locations | B-3 | | B-3 | USBS Station Locations | B-5 | | B-4 | Drag Summary | B-6 | | B-5 | Radar Data Weighting | B-7 | | 19- | |-----| | ~ | | | | | | | | | | | | | | × | | • | | | # **ILLUSTRATIONS** 1 | | | Page | |-------|--|------| | 3-1 | Timeline of Major Events and Radar Tracking Coverage | 3-2 | | 3-2 | APX Total G&N - S-IVB | 3-5 | | 3-3 | ΔP _Y Total G&N - S-IVB | 3-6 | | 3-4 | ΔP _Z Total G&N - S-IVB | 3-7 | | 3 - 5 | ΔV _X Total G&N - S-IVB | 3-8 | | 3-6 | ΔV _Y Total G&N - S-IVB | 3-9 | | 3-7 | ΔV _Z Total G&N - S-IVB | 3-10 | | 3-8 | Orbit Planes Inclination (from RTCC) | 3-16 | | 3-9 | Altitude Profile on Parachutes | 3-33 | # 3. APOLLO MISSION 6, AS-502 TRAJECTORY RECONSTRUCTION AND POSTFLIGHT ANALYSIS #### 3. 1 INTRODUCTION AND SUMMARY The Apollo 6 mission was launched from complex 39 A at Cape Kennedy, Florida, on 4 April 1966. Range zero was established at 12:00:01 Greenwich mean time (GMT) with command service module (CSM) guidance reference release (GRR) occurring 1.15 seconds later. Parking orbit insertion occurred at 12 minutes 37.04 seconds ground elapsed time (GET). Restart of the S-IVB for the second burn failed, and S-IVB/CSM separation was effected at 3 hours 14 minutes 27.8 seconds GET. An alternate mission plan was effected whereby the SPS-1 burn was used to inject the spacecraft into a high-apogee, earth-intersecting ellipse. At approximately 6 hours 28 minutes 57.05 seconds GET, the spacecraft reached an apogee of 12,019.57 nautical miles. There was no SPS-2 burn, although a preprogrammed ullage occurred. The command module entered the earth's atmosphere at approximately 9 hours 38 minutes 28 seconds GET, and splashdown occurred at approximately 9 hours 57 minutes 18 seconds GET. Figure 3-1 presents the AS-502 mission timeline and tracking coverage after S-IVB/CSM separation. #### 3. 2 ASCENT ANALYSIS AND SPS BURN RECONSTRUCTION ## 3. 2. 1 Analysis of IMU From Ascent Data
Analysis of IMU errors consists of determining a physically acceptable set of instrument errors to bring the trajectory as measured by the Apollo IMU into agreement with the best estimate of the actual trajectory flown. During the boost phase there were nine trajectories available from which to choose a standard. Six of these were generated by MSFC from the S-IVB Instrument Unit (IU) telemetry data. These six represented an evolution from the raw IU data to a final S-IVB BET designated as Final "Observed Mass Point Trajectory," (OMPT), the MSFC BET. The three remaining trajectories represent a similar evolution in the processing of GLOTRAC radar data. Since valid GLOTRAC data were available to Figure 3-1. Timeline of Major Events and Radar Tracking Coverage compare with Apollo telemetry only during the interval from 26 to 84 seconds, the Marshall OMPT was initially chosen as BET during boost. An extensive effort was made to select a reasonable set of error values to reduce the Apollo G&N minus OMPT position and velocity residuals to reasonable values. No reasonable set of errors was found which effected a good boost comparison with this trajectory and also yielded a good state vector comparison at the end of SPS-1 and at the same time fitted the entry conditions within reasonable bounds. Further investigation of the evolution of S-IVB IU data processing showed that the "Edited S-IVB IU TM" trajectory presented a much more realistic measurement of the boost trajectory than did the OMPT, and it was decided that the edited IU TM trajectory was the most feasible BET, and the same analysis was repeated with greater success. The results of this analysis are depicted in Table 3-1. The total position and velocity differences between the corrected Apollo IMU and the edited S-IVB/IU are given in Figures 3-2 through 3-7. A detailed discussion of the IMU evaluation may be found in the E&D-38 final report for Apollo 6 (NAS 9-4801). #### 3.2.2 SPS-1 Burn Reconstruction The trajectory reconstruction from Apollo IMU data which included SPS-1 was initialized on a state vector from the final OMPT at t=11599.85 seconds (GRR). This is approximately 15 seconds prior to the attempt at S-IVB restart. The reconstruction extends to t = 12218.0 seconds (GRR) which is about 10 seconds after SPS-1 shutdown. This trajectory is corrected for the IMU errors in Table 3-1, and a state vector comparison with the Segment 1 orbital BET (see Section 3.3.1) is given in Table 3-2. The differences between the two determinations represent errors from three independent areas: (1) the initial state vector from the OMPT, (2) the orbital BET determination, (3) the determination of the IMU errors. These residuals are somewhat smaller than those obtained after the S-IVB second burn on the AS-501 mission because of the improved tracking situations. Table 3-1. Apollo 6 IMU Errors | Error Source | <u>e</u> | Derived Erro | or Magnitude | |----------------------|----------|--------------|------------------| | Velocity Offset | vox | -4.66 | ft/sec | | | VOY | -0.66 | \$ 160 m 3 x 3 m | | | voz | 0.15 | | | PIPA Bias | вх | -194 | μg | | | ВУ | 500 | A Lot of the | | | BZ | 173 | *z w | | PIPA Scale Factor | XSF | -129.0 | PPM | | | YSF | -0.5 | | | | ZSF | -73.1 | | | PIPA Misalignments | XYMSL | 43.3 | arc sec | | | XZMSL | -55.1 | | | | YXMSL | 57.7 | 10 g - 20 | | | YZMSL | 21.6 | | | | ZXMSL | 42. 1 | | | | ZYMSL | 3.9 | | | Gyro Bias | XGCDR | 0.0185 | deg/hr | | | YGCDR | -0.0245 | | | | ZGCDR | -0.0140 | | | Acceleration | XADIA | 0.0365 | deg/hr·g | | Dependent Gyro Drift | YADIA | -0.0297 | | | | ZADIA | 0.0812 | | | | XADSR | -0.0086 | | | | YADSR | -0.0181 | | | | ZADSR | 0.0056 | | | | XADOA | 0.0392 | | | | YADOA | 0.0098 | | | | ZADOA | 0.0186 | | | Platform | РНІХ | -0.1 | arc sec | | Misalignment | РНІЧ | 9. 4 | | | | PHIZ | 0.5 | | 3-5 Figure 3-3. ΔP_{Y} Total GeN - S-IVB Figure 3-4. ΔP_Z Total G&N - S-IVB Figure 3-5. ΔV_{X} Total G&N - S-IVB Figure 3-6. ΔV_{Y} Total G&N - S-IVB Table 3-2. SPS-1 Endpoint Conditions (t=12218.0 seconds from GRR) APOLLO G&N Platform Coordinates | | IMU Reconstruction | Orbital BET | <u>A</u> | Δ(RSS) | |---------------------------|--------------------|-------------------|-------------|-------------| | X | 4,457,484.0 ft | 4,456,508.0 ft | 976.0 ft | | | Y | 536,935.0 | 534,431.0 | 2,504.0 | 3,697 ft | | Z | 22, 248, 293.0 | 22, 245, 754.0 | 2,539.0 | | | $v_{\mathbf{x}}$ | -28,561.88 ft/sec | -28,563.62 ft/sec | 1.74 ft/sec | | | $\mathbf{v}_{\mathbf{v}}$ | 212.31 | 218.38 | -6.07 | 6.64 ft/sec | | v_{z} | 13,417.89 | 13,419.95 | -2.06 | • | | 4 | | | | | #### 3.3 ORBIT ANALYSIS #### 3. 3. 1 Command Service Module Orbital Reconstruction (Coast Phase) The command service module trajectory was reconstructed using low speed C-band and low speed S-band radar tracking data and the TRW Orbit Determination Program (ESPOD). For the purpose of reconstructing a best estimate of the trajectory, the CSM orbital phase of the flight was divided into three segments as follows: - a) Segment 1: SPS1 engine cutoff to 19 hours and 00 minutes GMT (6:59:59 GET) - b) Segment 2: 19 hours and 00 minutes GMT(6:59:59: GET) to 21 hours and 10 minutes GMT (9:09:59 GET) - c) Segment 3: 21 hours and 10 minutes GMT (9:09:59 GET) to entry interface (400,000 feet) Table 3-3 presents a summary of information pertinent to the reconstruction of each of the above mentioned segments. Before the reconstruction of each segment is discussed in detail, a few assumptions concerning these fits should be stated. First, it is assumed that all stations are in perfect time synchronization with one another unless otherwise noted. Second, it is assumed that all data are time tagged on the receive pulse; thus, the light time correction retards the time tag of the data. Third, it is assumed that a -0.028 second timing Table 3-3. CSM Orbital Fit Summary (Coast Phase) | Solution Vector | State Vector | State Vector | State Vector | |-------------------------------------|-----------------------------|--|--------------------------------------| | Drag
(ft ² /slug) | 0.1614 | 0, 1614 | 0.1614 | | Station/Pass, (Burn) | ANTCO3, ASCCO3, and CROCO3. | ASCCO3, CROCO3, CROSO3*, GWMSO3*, and (SPS2 ullage). | CROSO3*, GWMSO3*, and (SPS2 ullage). | | Observation
Span GMT
(hr:min) | 15:24-18:29 | 18:00-21:33 | 20:42-21:33 | | Date | 4 April | 4 April | 4 April | | BET | , | 2 | 8 | *The S-band RXY data was converted to equivalent RAE data and used in the E version of ESPOD. bias added to all tracking data accounts for the difference between UT 1 (true universal time) and UTC (universal time coordinated) for 4 April 1968. Information which is too detailed to present in the body of this report, but nevertheless has a significant influence on the resulting BET, is presented in Appendix B. The information found in Appendix B is listed below. - a) A summary of radar observations for the command service module from CSM/S-IVB separation to entry - b) A summary of the station locations used in ESPOD - c) A summary of drag parameter (C_dA/2m) values for various phases of the mission - d) A table of radar data weights used in ESPOD for C-band and S-band radar data The coast phase of the flight lasted for a period of more than six hours. Attempts were made to fit the data from SPS1 engine cutoff to the initiation of SPS2 ullage using various combinations of C-band and S-band low-speed tracking data. However, these fits were not successful. It was suggested that unmodeled thrusting due to water boiler vent or imperfectly coupled RCS thrusting was the reason for the difficulty in fitting the coast phase in one segment. Attempts were made to model the water boiler vent utilizing the LOP burn model without success (Appendix C contains a discussion of the LOP burn model). This failure resulted in the decision to represent the coast phase of the flight by three fit segments. The trajectory for Segment 1 was reconstructed from SPS1 engine cutoff to 18 hours and 30 minutes GMT using low-speed C-band tracking data. The quality of the resulting fit which solved on the state vector was good. It should be mentioned that the C-band beacon was turned off at 18 hours, 29 minutes, and 30 seconds GMT, because it was the suspected cause of the attitude control system instability. Although it was later determined that it was not affecting the attitude control system, a decision was made to leave it off for the remaining portion of the flight. 3 Residual Mean and RMS by Station and Data Type for Segments 1, 2, Table 3-4. | | - | Range (ft) | : | V. | Azimuth* (deg) | | | Elevation* (deg) | n* (deg) | | |---------|-----------|------------|-----------|-----------|----------------|-----------|-----------|------------------|-----------|------| | Station | Segment 1 | Segment 2 | Segment 3 | Segment 1 | Segment 2 | Segment 3 | Segment 1 | Segment 2 | Segment 3 | | | ANTC | 10.0 | | | 0.0087 | | | -0.0096 | | | Mean | | | 47.0 | | | 0.0047 | | | 0.0096 | | | RMS | | | 3.0 | | | 3.0 | | | 3.0 | | | z | | ASCC | -2.0 | 22.0 | | -0.0057 | -0.0045 | | 0.0025 | 0.0012 | | Mean | | | 28.0 | 77.0 | | 0.0048 | 0.0039 | | 0.0064 | 0,0053 | | RMS | | | 102.0 | 29.0 | | 103.0 | 29.0 | | 103.0 | 29.0 | | | | CROC | -2.0 | -187 0 | | 0.0117 | 0.0121 | | 0,0022 | 0.0003 | | Mean | | | 15.0 | 141.0 | | 0.0101 | 0.0120 | | 0.0131 | 0.0067 | | RMS | | | 77.0 | 24.0 | | 78.0 | 24.0 | | 78.0 | 24.0 | | z | | CROS | | 86.0 | 1.0 | | 0.0212 | 0.0028 | | -0.0439 | -0.0458 | Mean | | | | 202.0 | 21.0 | | 0.0238 | 0.0272 | | 0.0103 | 0.0125 | RMS | | | | 161.0 | 31.0 | | 237.0 | 108.0 | | 237.0 | 108.0 | z | | GWMS | | -16.0 | 0.0 | | -0.0752 | -0.0723 | | -0.0109 | -0.0243 | Mean | | | | 240.0 | 17.0 | | 9900 70 | 0.0047 | | 0.0272 | 0.0189 | RMS | | | | 131.0 | 131. 0 | | 132.0 | 132. 0 | | 132.0 | 132. 0 | Z | | | | | | | | | | |
| | "The S-band RXY data were converted to equivalent RAE data and used in the E version of ESPOD. The residual mean and RMS by station and data type are listed in Table 3-4 for Segments 1 through 3. All quantities are defined as usual and N is the number of data points for each observation. Data anomalies and biases are discussed in the next section for all the segments. The S-band data were not used in Segment 1, because it slightly degraded the C-band fit, even though the quality of the S-band data was better on this flight than on the Apollo 4 flight. Some representative vector comparisons between the Segment 1 trajectory and a trajectory resulting from a fit of S-band data over the same time period are listed in Table 3-5 below: Table 3-5. S-band Trajectory Vector Comparisons for the Apollo 6 Mission | Comparison Time | | in the second se | |---------------------|-----------------|--| | (hr:min:sec) | ΔR (ft) | ΔV (fps) | | 15:23:00 | 1854. 0 | 1. 84 | | 15:53:00 | 2454.0 | 0.41 | | 16:23:00 | 1351.0 | 0.76 | | 16:53:00 | 218.0 | 0.82 | | 17:23:00 | 1591.0 | 0.78 | | 17:53:00 | 2919.0 | 0.70 | | 18:23:00 | 4077.0 | 0.59 | | 18:28:58.5 (Apogee) | 4372.0 | 0.56 | | | | | The average difference is 2,354 feet in total position and 0.81 foot/second in total velocity for the Apollo 6 mission. The average differences for the Apollo 4 mission for the same portion of the flight were 9,729 feet and 2.29 feet per second in total position and velocity respectively. The trajectory for Segment 2 represents the portion of the flight that was most difficult to reconstruct. The plot of the orbit plane inclination angle as a function of time as determined by the RTCC (Figure 3-8) Figure 3-8. Orbit Plane Inclination (from RTCC) indicates that apparently the unmodeled forces acting on the spacecraft had the most pronounced effect on the trajectory between 19 hours and 0.0 minutes GMT to 21 hours and 20 minutes GMT. Also, it should be noted that the RTCC had to downweight the a priori covariance matrix of the state variables three times during this period. However, since the Carnarvon S-band data are the only data available during this troublesome period, data anomalies could be clouding the issue. In order to determine the BET, other data must be incorporated into the fit in order to avoid a single station CROS fit. It was decided that the fit that was most consistent with the Segment 1 and Segment 3 trajectories would be chosen as the BET for Segment 2. The fit that was chosen utilized C-band data and S-band RXY data converted to equivalent RAE data and modeled the ullage burn in order to incorporate the post SPS 2 ullage Guam data into the fit. See Table 3-3 for a summary of this fit. Due to the high quality of the Segment 1 fit, the decision was reached to propagate the BET 1 beyond the fit span to 19 hours and 00 minutes GMT. The Segment 1 and Segment 2 trajectories were compared at this time. The total differences in position and velocity are 4,043 feet and 0.91 feet per second, respectively. The residual mean and RMS by station and data type for Segment 2 are found in Table 3-4. The Segment 3 trajectory was reconstructed using Carnarvon and Guam RXY tracking data which were converted to equivalent RAE data for use in the E version of ESPOD. The ullage burn was modeled in the fit which solved on the state variables. The data fit reasonably well, although the limited amount of Guam data seemed noisy. The Segment 2 trajectory and Segment 3 trajectory were compared at 21 hours and 10 minutes GMT. The total differences in position and velocity are 1,709 feet and 3.53 feet per second, respectively. The residual mean and RMS by station and data type are found in Table 3-4. Table 3-6 lists state vectors corresponding to specific events. The quantities tabulated are defined as follows: | Symbol | <u>Definition of Symbols</u> | |--------|---| | LAT | Geodetic latitude of the vehicle measured positive north of the equator (deg) | | LON | Longitude of the vehicle measured positive east of the Greenwich meridian (deg) | | BETA | Flight-path angle measured positive downward from the local vertical (deg) | | AZ | Azimuth of the velocity vector measured positive east of true north (deg) | | R | Magnitude of the position vector (ft) | | v | Magnitude of the velocity vector (ft/sec) | # 3.3.2 Data Anomalies and Biases The following data anomalies were observed by the RTCC during the coast phase of the Apollo VI flight. - a) Following the SPS1 burn ASCC051 data exhibited extremely large angle residuals, (50 degrees and 24 degrees on the Azimuth and Elevation, respectively. The site later reported they had been tracking a side lobe. The data had to be rejected. - b) At 3 hours, 50 minutes, and 00 seconds GET ACNS was asked to reacquire range to obtain an independent range at high elevation. - c) At about 3 hours, 53 minutes GET radar track of the CSM was lost. Only intermittent data were received in Houston. This situation lasted for approximately 18 minutes. Another acquisition message was forced to ACNS and ASCC, and shortly thereafter radar lock was reestablished. During this period some data were received from ACNS labeled destruct mode. Table 3-6. State Vector Summary (BET) | Event | Time GET
(hr:min:sec) | LAT
(deg) | (Geb) | BETA
(deg) | AZ
(deg) | R
(ff.) | V
(ft/sec) | |---------------------|--------------------------|--------------|------------|---------------|-------------|-----------------|---------------| | SPS-1 Engine Cutoff | 3:23:27.90 | 20, 40638 | 31.52397 | 76. 48669 | 116.06003 | 22, 609, 987. 0 | 31, 632, 756 | | Apogee | 6:28:57.05 | -31, 52923 | 51.53709 | 89, 99386 | 80, 67862 | 93, 938, 956. 0 | 7, 402, 750 | | SPS-2 Ullage On | 9:29:19.10 | 23, 83938 | 122, 18518 | 111. 44379 | 66. 98074 | 25, 472, 509.0 | 29, 335, 472 | | SPS-2 Ullage Off | 9:30:09.20 | 25.04101 | 125, 16530 | 110.33532 | 68. 29248 | 24, 944, 629.0 | 29, 751, 451 | | CM/SM Separation | 9:36:56.60 | 32, 37442 | 157, 32851 | 98.89687 | 84.90484 | 21, 688, 900. 0 | 32, 472, 476 | | Entry | 9:38:27.97 | 32, 73260 | 166. 28561 | 95.85270 | 89, 92080 | 21, 305, 463, 0 | 32,830.048 | | | | | | | | | | - d) At approximately 5 hours 30 minutes GET, CRO was asked to hold the C-band data and send their S-band data to Houston. This was done to gain information for one more independent system prior to the AGC NAV update. - e) At 6 hours 29 minutes 30 seconds GET the C-band beacon was turned off aboard the CSM. It was hoped that this would clear up a BMAG problem. It did not; however, the beacon was not turned back on in an effort to conserve power. Hence, during the latter part of the coast ellipse, only CROS data were received. In addition, the ASCC03 data were bad from 17 hours, 25 minutes, and 54 seconds GMT to 17 hours, 43 minutes, and 12 seconds GMT. A similar problem was observed on Apollo 4 flight; the problem has been traced to a timing error in the range computer. The following apparent data biases were observed from Table 3-4 and from single station fits of the data. | ACNS | A Y-angle bias of 0.023 degree was observed on a single station fit of ACNS03 data. | |------|---| | CROS | A Y-angle bias of 0.076 degree was observed on a single station fit of CROS03 data. | | ASCC | An average azimuth bias of -0.0054 degree was observed from Table 3-4. | | CROC | An average azimuth bias of 0.0118 degree was observed from Table 3-4. | # 3.3.3 Maneuver Analysis It was not possible to reconstruct the SPS 1 burn accurately in the ESPOD program using low-speed C-band tracking data and telemetered acceleration information in the form of an acceleration burn tape. However, the SPS 2 ullage burn was modeled in the Segment 3 trajectory. In order to give the reader
some idea of the magnitudes of these burns, the following information is tabulated in Table 3-7: - a) The maneuver - b) The time of initiation of the maneuver (GET) - c) The source of the information - d) The duration of the maneuver in seconds (Δt) - e) The component $\Delta V's$ in Apollo guidance platform coordinates (ΔV_x , ΔV_V , ΔV_Z) - f) The velocity increment (ΔV) The listed velocities have not been corrected for guidance errors. ### 3.3.4 S-band Radar Data Weighting During the period of time that Carnarvon S-band data were available for use by the RTCC, it was necessary to downweight the a priori covariance matrix of the state variables four times (ASCC 80: 18 hours, 07 minutes, and 42 seconds; CROS 83: 18 hours, 57 minutes, and 36 seconds; CROS 85: 19 hours, 45 minutes, and 30 seconds; and CROS 92: 21 hours, 08 minutes, and 12 seconds). Now unmodeled forces, such as water boiler vent and imperfectly coupled RCS thrusting could necessitate the downweighting of the a priori covariance matrix. However, there is another possible explanation for the downweighting of the a priori covariance matrix by the RTCC. If the X, Y angles were biased on the Carnarvon S-band data, and if the angle data were weighted too heavily with respect to the prime observable (doppler), then the incorrest estimate of state based on the biased angles when propagated would lead to an inconsistency between the propagated a priori covariance matrix and later data. This would force the RTCC to downweight the a priori covariance matrix to fit the current data. Now a single station fit of Carnarvon S-band data using the noise values listed in the Apollo Navigation Working Group (ANWG) document indicated an apparent 0.076-degree bias in the Y-angle. In order to test the hypothesis described above, fits were made using the following three-sigma weighting schemes and assuming that the CROS Y-angle had a 0.076-degree bias: Table 3-7. Maneuver Summary | | | | - | | | | | |--------------|---------------------------------|--------|------------------|----------|-----------------|--------------|----------| | | Time of | | | Δ۷ | ΔV _v | ΔV_z | ΔΛ | | | Initiation, GET
(hr:min:sec) | Source | Δt (sec) | (ft/sec) | (ft/sec) | (ft/sec) | (ft/sec) | | SPS-2 Ullage | 9:29:19.1 | G&N | 50. 1 | -13.142 | -1.142 | 17. 269 | 21.731 | | SPS-1 | 3:16:06.2 | G&N | 441.7 | -3967.92 | 122.82 | 6758.17 | 7837.87 | | | | | | | | | | | | Range (ft) | X, Y-Angle (m rad) De | oppler (cps) | |-----------------------|--------------|-----------------------|--------------| | Data Weighting Set 1: | 90.0 | 2. 4 | 0.2 | | Data Weighting Set 2: | 900.0 | 1.8 | 1.8 | | Data Weighting Set 3: | weighted out | 2.4 | 1. 2 | | Data Weighting Set 4: | weighted out | 2.4 | 0. 2 | where set 1 is the set of weights used by A-50 and is based on ANWG, set 2 is the set of weights used by the RTCC for the Apollo 6 mission, set 3 is the set of weights suggested for the Apollo C mission except that range is weighted out, and set 4 is a set of weights generated for purpose of this discussion. The fit using set 1 will be the standard of comparison. Table 3-8 lists the resulting data mean and RMS for the four fits while Table 3-9 lists the differences in the resulting state vectors at 21 hours and 10 minutes GMT. For Table 3-9 the run, which used weighting set 1, will be called fit 1, and etc. Table 3-8. Data Mean and RMS | Weighting Set | Range
(ft) | X-Angle
(deg) | Y-Angle
(deg) | Doppler (cps) | | |---------------|---------------|------------------|------------------|---------------|------| | 1 | 16.0 | -0.0078 | -0.0764 | -0.0231 | Mean | | | 23.0 | 0.0129 | 0.0093 | 0.0974 | RMS | | 2 | 49.0 | -0.0016 | 0.0317 | 0.0127 | Mean | | | 39.0 | 0.0285 | 0.0080 | 0. 1985 | RMS | | 3 | -2389.0 | 0.0024 | 0.0142 | -0.0236 | Mean | | | 53.0 | 0.0181 | 0.0087 | 0.2964 | RMS | | 4 | 2576.0 | -0.0241 | 0.0694 | 0.0013 | Mean | | | 36.0 | 0.0260 | 0.0081 | 0.0916 | RMS | | | | | | | | Table 3-9. Total Position and Velocity Differences (21:10:00 GMT) | Fits Differenced | ∆ R (ft) | ΔV (fps) | |------------------|-----------------|----------| | Fit 2 - Fit 1 | 17, 381. 0 | 15, 63 | | Fit 3 - Fit 1 | 21,065.0 | 27.00 | | Fit 4 - Fit 1 | 8,083.0 | 5. 94 | | | | | It can be seen in Table 3-8 that fit 2 has degraded the fit of the range, X-angle, and doppler data. Table 3-9 indicates that such a weighting scheme (set 2) will produce a significant error in the trajectory. These results substantiate the hypothesis described above. Fit 3 indicates that the third weighting scheme (set 3) is not strong enough to overcome the effect of the bad angles, while fit 4 shows significant improvement in both residual means and biases and trajectory differences over fits 2 and 3. A number of conclusions can be drawn. First, since the S-band angular data bias uncertainties are at least four times larger than the corresponding C-band angular data bias uncertainties, the doppler data which is the prime observable should be weighted so that it can overcome the effect of these angles which have a high probability of being bad. Second, the range data should be included in the fit but not to such an extent that it overrides the doppler data. Third, the S-band weighting scheme will be important on the C mission where the only C-band data available for the spacecraft will be skin track data. #### 3.4 RTCC TRAJECTORY COMPARISON The state vectors obtained in real time by the RTCC for the Apollo 6 mission were compared with the Task A-50 best estimate of the trajectory at RTCC anchor times from CSM/S-IVB separation to entry interface. The purpose of making these comparisons is to aid the RTCC in evaluating fit procedures for this and subsequent Apollo missions. The state vector comparisons are discussed in this section. Also included in the discussion is a set of special state vector comparisons of prime interest to the RTCC. As previously noted, a time bias was added to the time tag of the low-speed tracking data to account for the difference between UT1 and UTC. The real-time orbit determination program does not account for the difference between UT1 and UTC. However, when the comparisons were made, the BET was adjusted so that the BET and the RTCC trajectory were using the same time scale (UTC). Table 3-10 lists in detail the data received and processed by the RTCC. The maximum elevation of the pass (E_{max}), the anchor vector time (GMT), the number of valid points in each batch (No), and an indication that the data were either accepted or rejected (A/R) is tabulated. An "S" in the accept/reject column denotes a single station solution, while an N indicates the data that were not processed. The batch number is simply a numbering system used by the RTCC and has no special significance. The MSC memorandum on the RTCC Mission Data Summary was the source of Table 3-10. # RTCC Comparisons A summary of comparisons is listed in Table 3-11. The table lists the data used in the fit to obtain the RTCC vector, the RTCC batch number, the RTCC anchor time (GMT), the maximum elevation of the pass (E_{max}), the BET segment number, the total difference in position (ΔR), and the total difference in velocity (ΔV). During the first 4 1/2 hours of the coast ellipse (SPS-1 engine cutoff to 20 hours GMT) the RTCC vector comparisons were better on the Apollo 6 flight than for a similiar period of the Apollo 4 flight. On Apollo 4, data from Carnarvon were not available until just prior to apogee. Therefore, the RTCC vectors which were based on Ascension C-band and S-band data were essentially a result of single station fits. However, on Apollo 6 Carnarvon C-band and S-band data and Pretoria C-band data were available to the RTCC much earlier. Consequently, the RTCC could alternate ACNS, CROC, PREC, ASCC, and CROS data in the fits. This procedure results in much better geometry and is reflected in the better comparisons. Table 3-10. Summary of Radar Data for Apollo 6 (Coast Phase) | Code | <u>Batch</u> | Anchor Time (hr:min:sec) | <u>No.</u> | EMAX
(deg) | A/R | |------|--------------|--------------------------|------------|---------------|--------------| | ANTC | 62 | 15:23:30 | 28 | 7 | S | | REDC | 63 | 15:23:30 | 80 | 66 | R | | ACNS | 49 | 15:27:36 | 80 | 66 | A | | ASCC | 51 | 15:34:54 | 18 | 69 | R | | ACNS | 52 | 15:35:48 | 80 | 67 | . A | | ASCC | 55 | 15:48:24 | 26 | 45 | A | | ASCC | 57 | 16:09:06 | 43 | 30 | A | | ACNS | 58 | 16:19:36 | 80 | 26 | A | | ASCC | 59 | 16:24:42 | 80 | 24 | , A | | ACNS | 60 | 16:27:36 | 80 | 24 | A. | | CROC | 61 | 16:31:48 | 80 | 111 | \mathbf{A} | | PREC | 64 | 16:37:36 | 80 | 78 | \mathbf{A} | | ASCC | 65 | 16:38:30 | 80 | 21 * ~ | Α | | ACNS | 66 | 16:47:24 | 80 | 20 | Α | | CROC | 67 | 16:55:36 | 80 | 17 | Α | | PREC | 68 | 17:01:30 | 51 | 72 | A | | ASCC | 69 | 17:02:42 | 80 | 18 | Α | | ACNS | 70 | 17:11:12 | 63 | 17 | A | | CROC | 71 | 17:19:24 | 26 | 18 | A | | PREC | 73 | 17:28:48 | 67 | 68 | A | | CROS | 74 | 17:30:42 | 80 | 21 | Α | | ASCC | 75 | 17:36:30 | 23 | 15 | A | | ASCC | 76 | 17:45:36 | 74 | 14 | A | | CROS | 77 | 17:54:30 | 38 | 22 | Α | | PREC | 78 | 18:04:24 | 80 | 65 | A | | CROS | 99 | 18:05:24 | 80 | 24 | N | | CROC | 79 | 18:06:12 | 7.8 | 24 | A | | ASCC | 80 | 18:07:42 | 72 | 13 | A | | CROS | 100 | 18:13:24 | 80 | 24 | N | | CROS | 101 | 18:21:24 | 80 | 24 | N | Table 3-10. Summary of Radar Data for Apollo 6 (Coast Phase) (Continued) | Code | Batch | Anchor Time (hr:min:sec) | <u>No.</u> | E _{MAX} | A/R | |------|-------|--------------------------|------------|------------------|---------------------------| | CROS | 102 | 18:29:24 | 10 | 24 | N | | CROS | 82 | 18:33:48 | 80 | 25 | Α | | CROS | 83 | 18:57:36 | 80 | 25 | , A | | CROS | 84 | 19:21:36 | 80 | 26 | A | | CROS | 85 | 19:45:30 | 80 | 27 | \mathbf{A} | | CROS | 86 | 20:09:30 | 80 | 27 |
$\mathbf{A} = \mathbf{A}$ | | CROS | 87 | 20:28:06 | 80 | 27 | A | | CROS | 88 | 20:36:12 | 80 | 2.8 | A | | CROS | 89 | 20:44:12 | 80 | 28 | $_{i}\mathbf{A}$ | | CROS | 90 | 20:52:12 | 80 | 27 | A | | CROS | 91 | 21:00:12 | 80 | 27 | . A | | CROS | 92 | 21:08:12 | 59 | 24 | \mathbf{A} | | GWMS | 93 | 21:16:54 | 80 | 9 | A | | GWMS | 95 | 21:24:54 | 51 | 13 | A | | GWMS | 97 | 21:30:00 | 16 | 14 | S | | GWMS | 98 | 21:31:36 | 13 | 14 | , A | | GWMS | 96 | 21:32:54 | 15 | 12 | Α | | WTNS | 103 | 21:36:02 | 10 | 50 | Α | Table 3-11. RTCC Comparison Summary | Station | <u>Batch</u> | Anchor Time (hr:min:sec) | E
max
(deg) | BET | ΔR
(ft) | ΔV
(ft/sec) | |---------|--------------|--------------------------|-------------------|----------|------------|----------------| | ANRC | 62 | 15:23:30 | 7 | 1 | 1, 665 | 4. 23 | | ACNS | 49 | 15:27:36 | 66 | 1 | 879 | 4.61 | | ACNS | 52 | 15:35:48 | 67 | 1 | 1, 999 | 5.34 | | ASCC | 55 | 15:48:24 | 45 | 1 | 4, 776 | 4. 11 | | ASCC | 57 | 15:09:06 | 30 | 1 | 7, 784 | 2. 77 | | ACNS | 58 | 16:19:36 | 26 | 1 | 12, 015 | 2. 88 | | ASCC | 59 | 16:24:42 | 24 | <u> </u> | 11, 902 | 2. 46 | | ACNS | 60 | 16:27:36 | 24 | -
1 | 14, 194 | 2. 70 | | CROC | 61 | 16:31:48 | 11 | 1 | 9, 405 | 1.46 | | PREC | 64 | 16:37:36 | 78 | 1 | 11, 281 | 1. 23 | | ASCC | 65 | 16:38:30 | 21 | 1 | 11, 398 | 1. 22 | | ACNS | 66 | 16:47:24 | 20 | 1 | 11, 983 | 0.96 | | CROC | 67 | 16:55:36 | 17 | 1 | 10,647 | 0.55 | | PREC | 68 | 17:01:30 | 72 | 1 | 11, 256 | 0.39 | | ASCC | 69 | 17:02:42 | 18 | 1 | 10,739 | 0.12 | | ACNS | 70 | 17:11:12 | 17 | 1 | 10,710 | 0.20 | | CROC | 71 | 17:19:24 | 18 | 1 | 10,015 | 0.34 | | PREC | 73 | 17:28:48 | 68 | 1 | 9,800 | 0.51 | | CROS | 74 | 17:30:42 | 21 | 1 | 9, 350 | 0.57 | | ASCC | 75 | 17:36:30 | 15 | 1 , | 9,012 | 0.67 | | ASCC | 76 | 17:45:36 | 14 | 1 | 8,766 | 0.73 | | CROS | 77 | 17:54:30 | 22 | 1 | 8, 114 | 0.83 | | PREC | 78 | 18:04:24 | 65 | 1 | 6, 150 | 1. 04 | | CROC | 79 | 18:06:12 | 24 | 1 | 4,901 | 1.07 | | ASCC | 80 | 18:07:42 | 13 | .1 | 4,683 | 1.06 | | CROS | 82 | 18:33:48 | 25 | 1 | 3,041 | 1.08 | | CROS | 83 | 18:57:36 | 25 | .1 | 2, 190 | 1.00 | | CROS | 84 | 19:21:36 | 26 | 2 | 2,624 | 0.99 | | CROS | 85 | 19:45:30 | 27 | 2 | 3,018 | 1.03 | | CROS | 86 | 20:09:30 | 27 | 2 | 4,430 | 2. 14 | Table 3-11. RTCC Comparison Summary (Continued) | • | | | _ | | | | |---------|-------|--------------------------|-------------------|------------------------|-------------------|----------------| | Station | Batch | Anchor Time (hr:min:sec) | E
max
(deg) | BET | ΔR
<u>(ft)</u> | ΔV
(ft/sec) | | CROS | 87 | 20:28:06 | 27 | . • ,2 • • ,4 • | 7, 442 | 2. 75 | | CROS | 88 | 20:36:12 | 28 | 2 | 14,768 | 3.54 | | CROS | 89 | 20:44:12 | 28 | 2 | 18, 835 | 3.42 | | CROS | 90 | 20:52:12 | 27 | 2 | 19, 409 | 2.84 | | CROS | 91 | 21:00:12 | 27 | 2 | 13, 593 | 2. 21 | | CROS | 92 | 21:08:12 | 24 | 2 | 7, 795 | 2. 14 | | GWMS | 93 | 21:16:54 | 9 . | 3 | 1, 987 | 4. 10 | | GWMS | 95 | 21:24:54 | 13 | 3 | 1,051 | 4.01 | | GWMS | 97 | 21:30:00 | 14 | 3 | 13,781 | 36. 16 | | GWMS | 98 | 21:31:36 | 14 | 3 | 11, 986 | 36.55 | | GWMS | 96 | 21:32:54 | 12 | 3 | 11,663 | 35.30 | | | | | | | | | During the last 1 1/2 hours of the coast ellipse, 20 hours GMT to entry, the RTCC vector comparisons were worse on the Apollo 6 flight then on the Apollo 4 flight. There are a number of <u>possible</u> reasons for this situation. These reasons are listed as follows: - Unmodeled forces such as water boiler vent and imperfectly coupled RCS thrusting had a more significant effect on the trajectory during this period of the flight. - The only data available were CROS data which resulted in single station fits. - An RTCC data weighting scheme which weighted the biased Y-angle data too heavily would affect the resultant estimate of the trajectory. This situation has been discussed in the previous section. The summary of special comparisons can be found in Table 3-12. The vectors are time ordered according to anchor time and the total difference in position and velocity is listed. Table 3-12. RTCC Comparison Summary for Special Vectors | Vector Description | Anchor Time (hr:min:sec) | <u>ΔR (ft)</u> | ΔV
(ft/sec) | |---|--------------------------|----------------|----------------| | High-speed Telemetry
Vector | 15:23:40. 15 | 24, 564 | 37. 02 | | High-speed Radar Cutoff
Vector Following SPS-1 | 15:24:49. 4 | 5, 926 | 16. 27 | | AGC Navigation Update
Prior to Entry | 17:45:36 | 8,766 | 0.73 | The vector used to build the AGC navigation update prior to SPS-2 was much better on the Apollo 6 mission than on the Apollo 4 mission, cf 8,766 feet versus 15,219 feet in position and 0.73 feet per second versus 5.57 feet per second in velocity. This again is the result of data from stations other than Ascension being available to the RTCC. A suggested improvement in the RTCC fit procedure is described as follows: Since the RTCC is limited in the number of data points that can be batched at one time, it is suggested that during a coast ellipse or translunar trajectory the data rate be decreased, i.e. from one observation per 0.1 minute to one observation per minute. This will increase the data arc represented by a batch of data. The output of the RTCC Comparison Program is found in Appendix A. 3.5 ENTRY TRAJECTORY RECONSTRUCTION The set of IMU errors given in Table 3-1 was used to reconstruct the entry trajectory from t = 34,621.41 seconds (GRR) to splashdown using telemetry data from the AGC. The trajectory was initialized on a state vector from the segment 3 orbital BET (Section 3.1.1). Information concerning the actual entry trajectory is available from several sources. The actual impact point was estimated from optical sightings. The final estimates are as follows: - a) N Latitude = $27^{\circ} 40^{\circ} = 27.6687^{\circ}$ - b) E Longitude = $202^{\circ} 01' = -157.9833^{\circ}$ The times of drogue and main chute deployments were determined from baroswitch closure times reflected in the telemetry data. The altitudes at which these events most probably occurred were determined from baroswitch presettings and measurements of the atmospheric pressure profile. Experience with the Apollo command module descent rate on the main parachutes leads to an expected vertical velocity of 28 to 30 feet per second. Comparison of the reconstructed trajectory with these known constraints is given in Table 3-13. It is most convenient to express the constraints in an ESF Cartesian frame with origin at the actual impact point; (the BET tape contains these coordinates with origin at the planned splashpoint, 27.31667° N, -157.18333° E). Table 3-13. Entry Trajectory Comparison to Known Constraints | Event | Known
Constraints | Reconstructed
Trajectory | | | |--|-----------------------------|-----------------------------|--|--| | Drogue Deployment
t = 35, 486. 25 sec (GRR) | P (up)
23,600 ft | 22, 548 ft | | | | Main Chute Deployment
t = 35, 532. 25 sec (GRR) | P (up)
10, 900 ft | 9, 805 ft | | | | Splashdown | P (up) 0 | 51 ft | | | | | Q (south) 0 | 6,084 | | | | | R (east) 0 | 22, 688 | | | | | P (up)
-28 to -30 ft/sec | -26.4 ft/sec (average) | | | The only significant difference from the known constraints is that the reconstructed impact point is about 3.8 nautical miles east of the visual sighting. Figure 3-9 illustrates the altitude - time history of the entry BET from drogue deployment to splashdown. Figure 3-9. Altitude Profile on Parachutes ## APPENDIX A ## APOLLO 6 RTCC COMPARISONS The output of the RTCC Comparison Program is listed for each vector appearing in Table 3-11 and Table 3-12. The vector comparisons are listed in the order of occurrence in Table 3-11 and Table 3-12. The definitions of the symbols used are as follows: | Symbol | Definition of Symbols for RTCC Comparison | |---------------|--| | x y z x x ż ż | Components of the position and velocity vector referenced to a geocentric, inertial, Cartesian, coordinate system. It is a right-handed system where the X-axis lies in the true equatorial plane in the direction of the Greenwich meridian at 0h day of launch, the Z-axis is orthogonal to the true equatorial plane, and the Y-axis completes the right-handed system. The units are earth radii and earth radii/hour. | | SEMIMAJOR | Semimajor axis (ft) | | ECCEN | Eccentricity of the orbit | | INCL | Inclination of the orbit plane to the equator measured positive counterclockwise from the equatorial plane to the orbit plane at the ascending node (deg) | | NODE | Right ascension of the ascending node (deg) | | ARG PERIGEE | Argument of perigee measured positive in the direction of motion from the ascending node (deg) | | TRUE ANOM | True anomaly measured positive in the direction of motion (deg) | | PERIOD | Osculating period of the orbit (min) | | APOGEE | Altitude of apogee above a reference sphere (n mi) | | PERIGEE | Altitude of perigee above a reference sphere (n mi) | Symbol Definition of Symbols for RTCC Comparison VEL-MAG Magnitude of the inertial velocity vector (ft/sec) FLT PATH Flight path angle measured positive downward from the local vertical (deg) HEADING Azimuth of the velocity vector measured positive east of true North (deg) DECLIN Declination (deg) LONG Longitude of the vehicle measured positive east of the Greenwich meridian (deg) Height of the vehicle above a reference sphere HEIGHT (n
mi) Difference between the RTCC and ESPOD-DELTA U developed components of the position and velocity DELTA V vector in a vehicle-centered, coordinate DELTA W DELTA UDOT system where the U-axis is collinear with the **DELTA VDOT** earth-centered inertial radius vector and is directed DELTA WDOT outward, the V-axis lies in the orbit plane and is orthogonal to the U-axis, and the W-axis completes the right-handed system. Magnitude of the difference between the RTCC posi-DELTA POS tion vector and the ESPOD-developed position ve ctor. DELTA VEL Magnitude of the difference between the RTCC velocity vector and the ESPOD-developed velocity vector | ~ | - | RTCC | TRW | TRW) | TRW) | | |--|---|--|--|--|--|--| | PAGE | SEC | 010 | RTCC
TRW
(RTCC-TRW | RTCC
TRW
(RTCC-TRW) | RTCC
TRW
(RTCC-TRW) | | | a` | CH
23 MIN 29.000SEC | 2007
1 -0.17412135E
1 -0.17414259E | TRUE ANOM
35.18269920 R
35.18892860 TE | | HEIGHT
281.16894531 R
281.08801270 TF
0.08093262 (1 | DELTA WDOT
2.44 | | | TIME FROM LAUNCH
0 DAYS 3 HRS 23 | YDOT
-0.49545694E 01
-0.49545939E 01 | ARG PERIGEE
104.83209324
104.82539272
0.00670052 | | LONG
315.31469727
315.31507874
-0.00038147 | SEC)
DELTA VDDT
-0.82 | | VEH 1 | | xDOT
-0.14212440E 01
-0.14219389E 01 | NODE
42.07220793
42.07105017
0.00115776 | | DECLIN
20.24020362
20.24421740
-0.00401378 | COORDINATES (FT,FT/SEC) DELTA UDOT -3.35 | | T 11TER | SEC | 2
0.37394097E 00
0.37400389E 00 | TS (RTCC - TRW) INCL 32.57333517 32.57992983 -0.00659466 | PERIGEE
17.09631348
16.89761353
0.19869995 | HEADING
116.08219719
116.08778095
-0.00558376 | | | APOLLO RTCC COMPARISON
NBS SS MAN, ACC, NO UPD 1EDI | TIME U.T.
4/ 4/68 15 HRS 23 MIN 30.000 SEC | Y
-0.12046175E 00
-0.12046264E 00 | DIFFERENCES IN OSCULATING ELEMENTS
SEMI-MAJOR ECCEN
5754862.50 0.63485025
57565820.50 0.63498006
-17158.00 -0.00012981 | AP0GEE
12042, 79992676
12048,64611816
-5,84619141 | FLT PATH
76-45928001
76-45517063
0.00410938 | DIFFERENCE BETWEEN RTCC AND TRW VECTORS IN UVW
DELTA U DELTA V DELTA W
492. 5711484. | | 05/22/68
ANTC 062 28 | TIME U.T.
4/ 4/68 15 HB | X
-0.10069656E 01
-0.10069169E 01 | DIFFERENCES IN C
SEMI-MAJOR
5754 8662.50
5756 5820.50
-17158.00 | PER IOD
385.3 2059692
385.5 C293350
-0.1 7233658 | VEL-MAG
31624.2756
31625.8560
-1.58032227 | DIFFERENCE RETWE
DELTA U
492. | MAGNITUDE OF VECTOR DIFFFRENCE (FT,FT/SEC) DELTA POS DELTA VEL 1665. 4.23 05/22/68 APOLLO RTCC COMPARISON ACNS 049 80 DBS MS MAN, ACC, NO UPD 1 EDIT 6ITER VEH 1 | | ပ | | | | |---|---|--|---|--| | | RTCC | ₹ | R. | X X | | Ų | 01 | RTCC
TRW
(RTCC-TRW) | RTCC
TRW
(RTCC-TRW) | RTCC
TRW
(RTCC-TRW) | | OOSE | 80E
42E | RTCC
TRW | R T C C | | | 35.000SEC | 2007
-0.20381880E
-0.20388642E | 34
5251
7851
2601 | | HFIGHT
2.71228027
2.58132935
0.13095093 | | Z | 20. | TRUE ANDM
52.706552
52.709578 | | .71228
.58132 | | ~ | 9 0 | TRUE ANOM
52.70655251
52.70957851
-0.00302601 | | HFIGHT
642.71228027
642.58132935
0.13095093 | | ALINC
HR S | E 01 | | | 30 40 | | TIME FROM LAUNCH
O DAYS 3 HRS 27 | YDOT
-0.46901020E
-0.46898993E | E 23 99 775 | | 534 | | FRE | YDUT
69010
68989 | ARG PERIGEE
104.85807323
104.86098099
-0.00290775 | | LONG
330.35084534
330.35172653
-0.00088120 | | TIME | 4.0- | 6.44.85
0.0000000000000000000000000000000000 | | 0.35 | | | 000 | 1001 | | # # 1
| | | | | | 8 6 6 | | | x00T
5428(
5787 | 11197
11197
10263 | | IN
3117
7994 | | | ************************************** | NODE
42.07011938
42.06402636
0.00609303 | | DECLIN
11.85811758
11.85799479
0.00012279 | | | | 440 | | ==° | | , | 00 | 5 01510 | | 10 O + | | | 2
0.24368296E
0.24367265E | (RTCC - TRW)
INCL
32.57715082
32.58596277
-0.00881195 | PERIGEE
17.64978027
17.45718384
0.19259644 | EADING
-56618595
-57576180
-00957584 | | | 2
4368
4367 | 700
5771
5859 | ERIGEE
.64978
.45718 | 56618
57576
57576 | | U | 0.2 | (RT
32. | 17.
17. | HEADING
120.56618595
120.57576180
-0.00957584 | |) SEC | 00 | OSCULATING ELEMENTS (RT
ECCEN
0.63491974 32.
0.63494474 32. | , | | | 9.000 | | ELEM
1974
1474
1500 | 3906
1387
2480 | TH
7606
5482
2125 | | 3 | 338 | LATING ELEM
ECCEN
0.63491974
0.63494474 | APOGEE
8.88378
9.31921
0.43543 | FLT PATH
69.95917606
69.95755482
0.00162125 | | ¥ - | Y
-0.45133654E
-0.45133859E | LAT] | APUGEE
12048.88378906
12049.31921387
-0.43542480 | FLT PATH
69.95917606
69.95755482
0.00162125 | | 8.S. 2 | 9.9 | osco | 120 | | | ιν)
Ξ | 601 | | 209 | 500
121
938 | | 8 | 055E | NCES IN
-MAJOR
8827.50
9565.50 | 00
13142
10550
1740 | MAG
12.75
13.41 | | TIME U.T.
4/ 4/68 15 HRS 27 MIN 36.000 | ×
0692
0691 | FERENCES IN
SEMI-MAJOR
57568827.50
57569565.50 | PER IOD
385.5314209
385.54055023
-0.00740814 | VEL-MAG
29832.7500
29833.4121
-0.66210938 | | 11 | x
-0.10692055E 01
-0.10691648E C1 | DIFFERENCES IN
SEMÍ-MAJOR
57568827.50
57569565.50 | æ æ i | 1 | | | - | | | | DELTA WDOT DIFFERENCE BETWEEN RICC AND TRW VECTORS IN UVW COORDINATES (FT,FT/SEC) DELTA 11 DELTA 11 DELTA 12 -0.48 -0.63 -143. -346- MAGNITUDE OF VECTOR DIFFERENCE (FT.FT/SEC) DELTA POS 0ELTA VEL 879. 4.61 | ır. | | RTCC | TRW) | TRW) | TRW) | |---|------------------------------------|---|---|---|--| | PAGE | SEC | if 01
if 01 | RTCC
TRW
(RTCC-TRW) | RTCC
TRW
(RTCC-TRW) | RTCC
TRW
(RTCC-TRW) | | φ. | 5 MIN 47.000SEC | 2007
-0.21767145E
-0.21774374E | TRUE ANOM
78.70965572 R
78.71717548 T
-0.00751877 | | HEIGHT
1589.38931274 R
1589.34384155 T
0.04547119 (| | | LAUNCH
3 HRS 35 | 01 | F | | 158 | | | TIME FROM LAUNCH
O DAYS 3 HRS 3 | YDOT
-0.38133359E
-0.38130548E | ARG PERIGEE
104.88610363
104.88408470
0.00201893 | · | LONG
350.50851440
350.50746918
0.00104523 | | | | ш ш
00 | | | | | VEH 1 | | XDOT
0.85932177E
0.85883003E | NODE
42.06785202
42.06255007
0.00530195 | | DECLIN
-1.93519090
-1.93875133
0.00356042 | | OMPARISON
UPD 1EDIT 4 ITER VEH | EC. | 2
-0,49328180E-01
-0,49418454E-01 | S (RTCC - TRW)
INCL
32.57741404
32.58879995
-0.01138592 | PERIGEE
13.68786621
18.35940552
0.32846069 | HEADING
122.52620792
122.53742790
-0.01121998 | | APOLLO RTCC COMPAI
OBS MS MAN, ACC, NO UPD | RS 35 MIN 48.000 SEC | Y
-0.10341011E 01
-0.1034C708E 01 | 0SCULATING ELEMENTS
ECCEN
0.63459855
0.63462882
-0.00003027 | APCGEE
12036.87097168
12036.97070313
-0.09973145 | FLT PATH
61.03354216
61.03011227
0.00342989 | | 05/22/68
ACNS 052 80 | TIME U.T. 4/68 15 HRS 35 | -0.10305329E 01
-0.10305403E 01 | DIFFERENCES IN C
SEMI-MAJOR
57535485.50
57534790.00
695.50 | PER 100
385.19825745
385.19126892
0.00698853 | VEL-MAG
26006.9346
26007.0376
-0.10302734 | | | | | | € A | · • | DELTA WDOT 5.22 DELTA VOOT 0.44 DIFFERENCE BETWEEN RTCC AND TRW VECTORS IN UVW COORDINATES (FT,FT/SEC) DELTA U DELTA U 277. -551. 1901. (FT,FT/SEC) MAGNITUDE OF VECTOR DIFFERENCE DELTA POS DELTA VEL 1999. 5.34 APOLLO RICC COMPARISON 26 OBS MS MAN, ACC, NO UPD 1EDIT 31TER VEH 1 05/22/68 ASCC 055 | | RTCC | | | | (R TCC-TRW) | | | | (RTCC-TRW) | |--|---|----------------------------------|----------------|--------------|-------------|---------|-----------------|----------------|------------| | OSEC | 8E 01
7E 01 | | RTCC | TRW | (R TCC | | RTCC | TRW | PATCE | | 23.00 | ZDOT
-0.19590618E
-0.19596057E | \$
C | | | | | | • | | | IME FROM LAUNCH
O DAYS 3 HRS 48 MIN 23.000SEC | -0.19 | TRUE ANDM | 103.22424793 | 103,23050785 | -0.00625992 | | | | | | JNCH | 01 | ⊢ | 103 | 103 | ٢ | | | | | | TIME FROM LAUNCH
O DAYS 3 HRS 4 | 87E
27E | u: | 79 | 84 | 95 | | | | | | E FRO | YDOT
260751
260730 | R IGE | 32291 | 19552 | 0.00273895 | | | | | | T O | 90 | ARG PERIGEE | 104.88229179 | 104.87955284 | 0 00 | | | | | | | 010 | .41 | -1 | , -1 | | | | | | | | XDOT
873241
869270 | | 12581 | 11540 | 11041 | | | | | | | xDQT
0.16873241E
0.16869270E | NOCE | 42.06432581 | 42,06051540 | 0.00381041 | | | | | | | | | 42 | 42 | 0 | | | | | | | ы ш
00 | 3 | ~ | œ | 9 | | 9 | - | ĸ | | | 2
48722435E
48742511E | ICC - TRW) | 49583 | .58551168 | 01055336 | 3EE | 35434 | 55454 | 32299805 | | | Z
-0.48722435E
-0.48742511E | R TCC
INCL | 32.574 | 32.58 | -0.010 | PERIGEE | 18,96954346 | 18,64654541 | 0.322 | | SEC | | ITS (| m | m | ŧ | |
 ~ 1 | | | 000 | Y
-0.17012892E 01
-0.17012156E 01 | OSCULATING ELEMENTS (R1
ECCEN | 169 | 131 | 35 | | 99, | 53 | 113 | | 24. | /
12892
12156 | TING EL
ECCEN | 0.53434697 | 0.63437331 | -0.00002635 | SEE. | 12025, 10009766 | 12025.02001953 | 0.08007813 | | 2E | 1701 | AT IN | 0.53 | 0.6 | 0.0 | APOGEE | 25.10 | 25.02 | 0.08 | | RS 41 | | าระบุเ | | | • | | 1202 | 120 | | | E | 000 | | 50 | 50 | 00 | | 151 | 555 | 395 | | U.T.
58 | 64 70E | VCES | 0880 | 9356. | 1224.00 | 10.0 | 47774 | 35483 | 0.01229095 | | TIME U.T.
4/ 4/68 15 HRS 48 MIN 24.000 SEC | X
-0.74696470E 00
-0.74704447E 00 | DIFFERENCES IN
SEMI-MAJOR | 57500580.50 | 57499356,50 | | PER 100 | 84.84 | 384,83548355 | 0.0 | | -4 | 00 | DIF | • | -1 | | | ĕ | ñ | | | CC-TRW) | | |---|---| | 3173.99374390 RTCC
3174.05148315 TRW
-0.05773926 (RTCC-TRW) | | | 8.54660547
8.54343975
0.00316572 | T/SEC) | | -14.69349873
-14.69955850
0.00605977 | COORDINATES (FT.F | | 119.40414047
119.41328621
-0.00914574 | VECTORS IN UVW | | 54.15756655
54.15479755
0.00276899 | FTCC AND TRW | | 21344.6924
21344.4270
0.26538086 | DIFFERENCE BETWEEN RTCC AND TRW VECTORS IN UVW COORDINATES (FT, FT/SEC) | DELTA WOOT DELTA VDOT DELTA UDOT DELTA W DELTA V -217. DELTA U -351. 4758. -0.59 HEI GHT LONG 54,15756655 FLT PATH VEL -MAG HEADING DECL IN (FT,FT/SEC) MAGNITUDE OF VECTOR DIFFERENCE DELTA POS DELTA VEL 4776. | ~ | | RTCC | FRW | 3 | RW.) | | |---|----------------------------------|--|---|--|--|--| | PAGE | 5.000SEC | 6E 01
8E 01 | RTCC
TRW
(RTCC-TRW) | RTCC
TRW
(RTCC-TRW) | RTCC
TRW
(RTCC-TRW) | | | | MIN 5.00 | 2007
-0.14976506E
-0.14980078E | ANDM
388992
897110 | , | HEIGHT
5526.62493896
5526.71087646
-0.08593750 | | | | • | 0110 | TRUE
125.62
125.62 | | HE
5526.6
5526.7 | | | | TIME FROM LAUNCH
O DAYS 4 HRS | YNOT
-0.13706232E
-0.13704894E | ARG PERIGEE
104.87901020
104.87518883
0.00382137 | | LONG
24.75242472
24.74854183
0.00388288 | | | VЕН 1 | | xDOT
0.19805711E 01
0.19802867E 01 | NODE
42.05597734 1
42.05389023 1 | | DECLIN
-24.54598856
-24.55335188
0.00736332 | | | COMPARISON
O UPD 1EDIT 21TER | SEC | 2
-0.10817586E 01
-0.10820734E 01 | TS (RTCC - TRW) INCL 32.57156897 32.58120632 -0.00963736 | PERIGEE
18.79861450
18.47103882
0.32757568 | HEADING
112.11286640
112.11974144
-0.00687504 | | | APOLLO RTCC COMPAR
OBS MS MAN, ACC, NO UPD | NIM 6 | Ò | Y
-0.23667389E 01
-0.23666162E 01 | OSCULATING ELEMENTS
ECCEN
0.63427603
0.63429669
-0.0002067 | APOGEE
12020.66491699
12020.27038574
0.39453125 | FLT PATH
50.72883511
50.72713280
0.00170231 | | 05/22/68
ASCC 057 43 ORS | TIME U.T.
4/ 4/68 16 HRS | X
-0.95441780E-01
-0.95597509E-01 | DIFFERENCES IN SEMI-MAJOR 57486587.00 57484393.00 | PER IOD
384.7 C729446
384.68527222
0.02202225 | VEL-MAG
16486.1951
16485.7615
0.43359375 | | | | | | | <u>.</u> | وخع | | DELTA WOOT 2.66 DELTA VOOT DIFFERENCE BETWEEN RTCC AND TRW VECTORS IN UVW COORDINATES (FT,FT/SEC) DELTA (1 DELTA V DELTA W DELTA UDDT DEL -523. 476. 7752. (FT,FT/SEC) MAGNITUDE OF VECTOR DIFFERENCE DELTA POS DELTA VEL 7784. 2.77 APCLLO RICC COMPARISON MS MAN ACC NO UPD 1EDIT 3ITER VEH 1 05/22/68 ACNS 058 80 DBS | | RTCC | | N N | TRW) | TRW) | | |------------------------------------|---|------------------------------|---|---|--|---| | SEC | E 01 | , L | TRW
(RTCC-TRW | RTCC
TRW
(RTCC-TRW) | RTCC
TRW
(RTCC-TRW) | | | 9 MIN 35.000SEC | ZDOT
-0.12964848E
-0.12968532E | TRUE ANOM | | 2 = 5 | HEIGHT
6552.21282959 R
6552.39312744 TI
-0.18029785 (| DELTA WOOT | | M LAIJNCH
4 HRS 19 | 000 | - n | 1 | | 655 | | | TIME FROM LAUNCH
O DAYS 4 HRS 1 | YDOT
-0.95713792E
-0.95708585E | ARG PERIGEE | 104-87553692
0.00355530 | | LONG
30.01094294
30.00445437
0.00648856 | SEC)
DELTA VOOT
1.09 | | | E 01 | | .,. | | | ,FT/ | | | XDOT
0.19491634E
0.19688350E | NODE | 42.0508593
42.05085993
0.00444698 | | DECLIN
-27.18680000
-27.19650197
0.00970197 | VECTORS IN UVW COCRDINATES (FT,FT/SEC) DELTA W DELTA UDOT DE 11700. | | | E 01 | 3 4 | 004 | e ai ⊨ | 000 | 3
3 | | SEC | Z
-0.13258055E
-0.13262665E | | 32,58003330
-0,01151514 | PERIGEE
18.74984741
18.38775635
0.36209106 | HEADING
108.66295052
108.66997242
-0.00702190 | VECTORS IN UV
DELTA W
11700. | | MIN 36.000 | Y
-0.25689635E 01
-0.25688148E 01 | OSCULATING ELEMENTS
ECCEN | 0.6342931
0.63429216
-0.00002868 | APOGEE
12019, 79748535
12019, 66345215
0, 13403320 | FLT PATH
50.74583006
50.74387980
0.00195026 | RTCC AND TRW V
DELTA V
2504. | | TRS. | | USCI | | | | RETWEEN | | TIME U.T.
4/ 4/68 16 HRS 19 | X
0.25104858E CO
C.25074032E OO | DIFFERENCES IN
SEMI-MAJOR | 57482295.50
57482295.50
1507.50 | PER TOD
384.6 7935562
384.6 6422272
0.01513290 | VEL-MAG
14790.5533
14790.0535
0.49987793 | DIFFERENCE RETU
DELTA U
-1097. | (FT,FT/SEC) MAGNITUTE OF VECTOR DIFFERENCE DELTA POS DELTA VEL 12015. 2.88 | σ | | RTCC | Z. | RW) | RW | |---|------------------------------------|--------------------------------------|---|---|---| | PAGE | S | 01 | RTCC
TRW
(RTCC-TRW) | RTCC
TRW
(RTCC-TRW) | RTCC
TRW
(RTCC-TRW) | | PA | 2000 | T
567E
729E | | RTCC
TRW | | | | MIN 41.000SEC | 2007
-0.12072567E
-0.12075729E | TRUE ANDM
136.35911179
136.36358261
-0.00447083 | | HEIGHT
7010-93865967
7011-08819580
-0-14953613 | | | | 00 | TRUE ANDM
36.359111
36.363582
-0.004470 | | HEIGHT
0.93865
1.08819
0.14953 | | | LAUNCH
4 HRS 24 | 000 | FEET | | 70107 | | | TIME FROM LAUNCH
O DAYS 4 HRS 2 | YDOT
-0.78845373E
-0.78840406E | 739
722 | | 74
376
398 | | | IME FRO | YDOT
788453
788404 | G PERIGEE
4.87904739
4.87595367
0.00309372 | , | LONG
2.12807274
2.12232876
0.00574398 | | | M O | 00 | ARG PERIGEE
104.87904739
104.87595367
0.00309372 | | LONG
32-12807274
32-12232876
0-00574398 | | | | 56 | ⋖∺∺ | | | | | | XDDT
0.19476068E
0.19473291E | 1748
2860
8888 | | N
6597
9876
3279 | | ,1 | | XD
1947 | NODE
42.05361748
42.04952860
0.00408888 | | DECLIN
-28.15766597
-28.16709876
0.00943279 | | VEH | | | 4,77,7 | | -28
-28
0 | | 2 IT ER | | 55 | 5 | 24.0.4 | | | j | | 7
14322072E
14326682E | FCC - TRW)
INCL
55883955
57961321
01077366 | ERIGEE
,69638062
,35531616 | EADING
.08493996
.09090519 | | RISON | | 1432
1432 | | ERIGEE . 69638 . 35531 . 34106 | HEADING
7.08493
7.09090
0.00596 | | APOLLO RICC COMPARISON MS MAN ACC UPDATE 2EDI | SEC | 10-10-11 | OSCULATING ELEMENTS (RT
ECCEN
0.63426631
C.63429182
-0.000025510. | 9 8 8 0 | HE
107. | | 70 O | | E 01 | EMEN 31 | 27
49
77 | 59
30 | | LO R | MIN 42.000 | Y
-0.26430245E
-0.26428712E | LATING ELEM
ECCEN
0.63426631
C.63429182 | APUGEE
12019, 70532227
12019, 50085449
0, 20446777 | FLT PATH
51.02294159
51.02138329
0.00155830 | | APOL
MS M | Z
Z | 7
2643
2642 | -ATING
- ECCEN
0.6342
C.6342 | APOGEE
19.7053
19.5008
0.2044 | FLT
51.02
51.02
0.00 | | ORS | HRS 24 | | บระกา | 1201 | 41.51 | | 80 | H 91 | 000 | | 531 | 290
531
008 | | /e8
059 | U. T.
68 | 3303 | FERENCES IN
SEMI_MAJOR
57483361.00
57481704.00 | PER 100
4.67491531
4.65827942
0.01663589 | VEL-MAG
140 85.8290
140 85.3531
0.47583008 | | 05/22/68
ASCC 05 | TIME U.T.
4/ 4/68 16 | X
0.41752877E
0.41723303E | DIFFERENCES IN
SEMI-MAJOR
57483361.00
57481704.00 | PER IOD
384.67491531
384.65827942
0.01663589 | VEL
140
140
4.0 | | 0 < | b== -2* | ဝီဝီ | 110 | ന്ന | | | | | | | 2 | • | DELTA WDOT 2.25 DELTA VDOT DIFFERENCE BETWEEN RICC AND TRW VECTORS IN UVW COORDINATES (FT,FT/SEC) DELTA # DELTA UDOT DEL -909. -2292. 11643. -0.39 (FT,FT/SEC) MAGNITUDE DF VECTOR DIFFERENCE DELTA POS DELTA VEL 11902. 2.46 TIME FROM LAUNCH 05/22/68 APPLLO RICC COMPARISON ACNS 060 90 OBS MS MAN ACC NO UPD LEDIT 318 ER VEH 1 TIME U.T. | | RTCC | | TRW | TRW) | TRW | |-------------------------------|--|--|-------------|--|---| | OSEC | 3E 01 | #
7 T C
7 E € | (R TCC-TRW) | RTCC
TRW
(RTCC-TRW) | RTCC
TRW
(RTCC-TRW) | | 27 MIN 35.00 | 2007
0 -0.11586763E
0 -0.11590203E | TRUE ANDM
138.03776741 | | | HEIGHT
7260.63653564
7260.84747314
-0.21093750 | | 0 DAYS 4 HRS 27 MIN 35.000SEC | YDOT
-0.70001787E 00
-0.70001073E 00 | ARG PERIGEE
104.87964916 | | | LONG
33.23092270
72
33.22357368 72
0.00734901 | | | XDOT
0.19322413E 01
0.19319283E 01 | NODE
42.05407381
42.04881525 | | | DECLIN
-28.63758039
-28.64823699
0.01065660 | | U | Z
-0.14893181E C1
-0.14898547E 01 | (RTCC - TRW)
INCL
32.56734371
32.57941008 | -0.01206636 | PERIGEE
18.71176147
18.33926392
0.37249756 | HEADING
106.21414566
106.22063923
-0.00649357 | | 16 HRS 27 MIN 36.000 SEC | Y
-0.26789746E 01
-0.26788208E 01 | DIFFERENCES IN OSCULATING ELEMENTS (RTCC - TRW) SEMI-MAJOR | -0.00003082 | APOGEE
12019.49597168
12019.42590332
0.07006836 | FLT PATH
51.24810457
51.24623585
0.00186872 | | 4/ 4/68 16 HR | X
0.51137528E 00
0.51098995E 00 | DIFFERENCES IN 0
SEMI-MAJOR
57482771.50
57481427.00 | 1344.50 | PERIOD
384.66899872
384.65550232
0.01349640 | VEL-MAG
13713.6879
13713.1681
0.51977539 | DEL TA WDOT DELTA VOOT DIFFERENCE BETWEEN RTCC AND TRW VECTORS IN UVW COORDINATES (FT,FT/SEC) DELTA W DELTA U DELTA V DELTA W DELTA UOUT -1283. -0.62 MAGNITUDE OF VECTOR DIFFERENCE (FT,FT/SEC) DELTA POS DELTA VEL 14194. 2.70 APOLLO RTCC COMPARISON MS MAN ACC NO UPD 2EDIT 3ITER VEH 1 061 80 085 CROC 05/22/68 TX X -0.00316048 (RTCC-TRW) (R TCC-TRW) 5 5 RTCC 0 DAYS 4 HRS 31 MIN 47.000SEC 10 X LA TR. -0.10911523E -0.10913350E 140,33882141 7608,71221924 140,34198189 7608,73699951 **Z001** TRUE ANDM HE I GHT TIME FROM LAUNCH 000 -0.58054890E -0.58045855E 104.87664318 34.70152092 104.87681770 34,70408869 YDOT ARG PERIGEE LONG 0.19065311E 01 0.19063831E 01 -29.26693225 0.00770545 42.05157614 -29,25922680 42.04782581 0.00375032 DECLIN 010 I TRE -0.15682197E -0.15685996E 32.57124615 32,57915115 18,31796265 0.23712158 104.99454880 18,55508423 -0.00790501 104,99181271 PER IGEE HEADING INCL DIFFERENCES IN OSCULATING ELEMENTS (RTCC MIN 48,000 SEC -0.27237521E 01 -0.27235819E 01 0.63427918 51,65169239 51,65122938 -0.00001283 12019, 73962402 12019,34387207 0,39575195 0.63429201 -0.27237521E FLT PATH APOGEE ECCEN r) 16 HRS 000 384.65234756 384.67164993 57483036.00 57481112,50 1923,50 13207,1399 13206.7941 SEMI-MAJOR 0.64552074E 0.64535138E TIME U.T. VEL -MAG 4/ 4/68 PER 100 DELTA VOOT DIFFERENCE BETWEEN RICC AND TRW VECTORS IN UVW COORDINATES (FT, FT/SEC) DELTA UDOT 0.10 DELTA W (FT,FT/SEC) MAGNITUDE OF VECTOR DIFFERENCE DELTA V DELTA U -0.02478027 (RTCC-TRW) -0.00273609 0.00046301 0.34582520 DELTA WOOT DELTA VEL NEL TA POS RTCC | PAGE | TIME FROM LAUNCH
0 DAYS 4 HRS 37 MIN 35.000SEC | YDOT | |---|---|--| | VEH 1 | | *DOT
0*18662118E 01
0*18660885E 01 | | OMPARISON
DATE 4EDIT 21TFR | FC | 01 -0.16693075E 01
01 -0.16697627E 01 | | APCLLO RICC COMPARISON
80 DBS MS MAN, ACC, UPDATE 4 EDIT 21TFR VEH 1 | TIME U.T.
47 4/68 16 HRS 37 MIN 36.000 SEC | Y
-0.27724888E 01
-0.27722847E 01 | | 05/22/68
PREC 064 80 | TIME U.T.
4/ 4/68 16 HR | X
0.82793297E 00
0.82772865E 00 | | TRUE ANDM
143.29300117 RTCC
143.29546738 TRW
-0.00246620 (RTCC-TRW) | RTCC
TRW
(RTCC-TRW) | HEIGHT
8063.02093506 RTCC
8063.04656982 TRW
-0.02563477 (RTCC-TRW) | |---|--|---| | ARG PERIGEE
104.87422562
104.87728882
-0.00306320 | | LONG
36.5410410
36.54138231
0.00272179 | | NODE
42.05337572
42.04654598
0.0C682974 | | DECLIN
-29.98161030
-29.99055099
0.00894070 | | S (RTCC - TRW)
INCL
32.57037020
32.57885408
-0.00848389 | PERIGEE
18.48464966
18.29357910
0.19107056 | HEADING
103.36392784
103.36502838
-0.00110054 | | DIFFERENCES IN DSCULATING ELEMENTS
SEMI-MAJOR ECCEN
57482264.00 0.63428171
57480787.50 0.63429251
1476.50 -0.00001080 | APCGEE
12019.55603027
12019.26110840
0.29492188 | FLT PATH
52.35444260
52.35416126
0.00028133 | | DIFFERENCES IN
SEMI-MAJOR
57482264.00
57480787.50
1476.50 | PER 100
384.66389847
384.64908218
0.01481628 | VEL-MAG
12564.4996
12564.2136
0.28601074 | | | DELTA WDOT | 1.19 | |--|--------------|-------| | | E C | | | . | DELTA VDOT | .0.29 | | : AND TRW VECTORS IN UVW COORDINATES (FT.FT/SEC) | DELTA UDOT C | | | VECTORS IN UVW | DELTA W | 11277 | | PTCC | DELTA V | 276. | | DIFFERENCE BETWEEN | DELTA U | -157. | MAGNITUDE OF VECTOR DIFFERENCE (FT,FT/SEC) DELTA POS DELTA VEL 11281. 1.23 | PAGE 13 | SEC | E 00 RTCC | RTCC
TRW
(RTCC-TRW) | RTCC
TRW
(RTCC-TRW) | RTCC
TRW
(RTCC-TRW) | | |---|------------------------------------|--|---|--|---|--| | | ICH
: 38 MIN 29.000SEC | ZDOT
00 -0.98908485E
00 -0.98923771E | TRUE ANDM
143.73078728 R
143.73326111 T
-0.00247383 (| | HEIGHT
8130.87164307 R
8130.89630127 T
-0.02465820 (| DELTA WDOT
1.18 | | | TIME FROM LAUNCH
0 DAYS 4 HRS 3 | YDOT
-0.40780958E
-0.40773655E | ARG PERIGEE
104.87436581
104.87740135
-0.00303555 | | LONG
36.81072092
36.80799532
9.00272560 | SEC)
DELTA VOOT
0.30 | | VEH 1 | | xDOT
0.18595276E 01
0.18594050E 01 | NODE
42.05219691
42.04635429
0.00684261 | | DECLIN
-30.08183908
-30.09082198
0.00898290 | COCRDINATES (FT,FT/SEC) DELTA UDOT 0.09 | | COMPARISON
OUPD LEDIT ZITER | SEC | 7
-0.16842417E 01
-0.16847011E 01 | FS (RTCC - TRW) INCL 32.57028580 32.57881308 -0.00852728 | PERIGEE
18.48257446
18.29058838
0.19198608 | HEADING
103.11745453
103.11850071
-0.00104618 | /ECTORS IN UVW CO
DELTA W
11393. | | APOLLO RTCC COMPAI
OBS MS MAN ACC NO UPD | 38 MIN 30,000 | Y
-0.27787714E 01
-0.27785656E 01 | OSCULATING ELEMENTS
ECCEN
0.63428179
0.63429262
-0.00001083 | APCGEE
12019.55090332
12019.25305176
0.29785156 | FLT PATH
52.47766209
52.47740555
0.00025654 | DIFFERENCE BETWEEN RTCC AND TRW VECTORS IN UVW
DELTA H DELTA V DELTA W
-150. 316. 11393. | | 05/22/68
ASCC 065 80 01 | TIME U.T.
4/4/68 16 HRS | X
0.85587809E 00
0.85567004E 00 | DIFFERENCES IN 05
SEMI-MAJOR
57482242.50
57480754.00 | PER IOD
384.66368866
384.64875031
0.01493835 | VEL-MAG
12470.1693
12469.8811
0.28820801 | DIFFERENCE BETWEN
DELTA H
-150. | | | | | | | | | (FT,FT/SEC) MAGNITUDE OF VECTOR DIFFERENCE DELTA POS DELTA VEL 11398. 1.22 05/22/68 APPLLO RTCC COMPARISON ACNS 066 80 DBS MS MAN ACC NO UPD ZEDIT ZITER VEH I | | RTCC | TRM | RTCC
TRW
(RTCC-TRW) | RTCC
TRW
(RTCC-TRW) | |-------------------------------------|--------------------------------------|---|--|---| | EC | 000 | RTCC
TRW
(RTCC-TRW | RTCC
TRW
(RTCC- | Ω
ΣΣ
1.001 | | H
47 MIN 23.000SEC | ZDOT
-C.86325539E
-C.86337033E | TRUE ANDM
147.80756378 RTCC
147.80988312 TRW
-0.00231934 (RTC | RTCC
TRW
(RTC | HEIGHT
8764.87548828 RTCC
8764.88708496 TRW
-0.01159668 (RTC | | AUNC
18 S | 000 | end end | | 87 | | TIME FROM LAUNCH
O DAYS 4 HRS 47 | YDOT
-0.20659297E
-0.20653749E | ARG PERIGEE
104.87500477
104.87841225
-0.00340748 | | LONG
39.20857143
39.20614338
0.00242805 | | | 01 | | | | | | XDOT
0.17985721E
0.17984684E | NODE
42.05180931
42.04458237
0.00722694 | | DECLIN
-30.92578077
-30.93480039
0.00501961 | | | 100 | | | | | EC | 2
-0.18214954E
-0.18219757E | S (RTCC - TRW)
INCL
32.57000208
32.57847834
-0.00847626 | PERIGEF
18.44784546
18.26098633
0.18685913 | HEADING
100.76601028
100.76606750
-0.00005722 | | S O | 01 | E N | | | | T.
16 HRS 47 MIN 24.000 SEC | Y
-0.28239824E
-0.28237665E | DIFFERENCES IN OSCULATING ELEMENTS
SEMI-MAJOR ECCEN
57481877.00 0.63428314
5748C411.00 0.63429356
1466.00 -0.00001042 | APEGEE
12019.46557617
12019.16979980
0.29577637 | FLT PATH
53.88942862
53.88940811
0.00002050 | | H 9 | 010 | N 8000 | 5111
563
947 | 6 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | | TIME U.T. | X
0.11265454E
0.11263205E | DIFFERENCES IN
SEMI-MAJOR
57481877.00
5748(411.00 | PER 10D
384.66001511
384.64530563
0.01470947 | VEL-MAG
11606.3295
11606.0450
0.28442383 | DELTA WDOT DELTA VDOT .0.28 DIFFERENCE RETWEEN RTCC AND TRW VECTORS IN UVW COORDINATES (FT,FT/SEC) DELTA U DELTA U DELTA W 0.10 11974. 470. -711. MAGNITUDE OF VECTOR DIFFERENCE (FT,FT/SEC) DELTA POS 0.96 | 05/22/68
CRUC 067 80 | APOLLO RTCC COMPARISON
ORS MS MAN ACC NO UPD 2EDI | OMPARISON
1 UPD ZEDIT 3ITER | VEH 1 | | PAGE 15 | | |--|---|---|--|--|---|------| | TIME L.T. | 16 HRS 55 MIN 36.000 S | SEC | | TIME FROM LAUNCH
O DAYS 4 HRS 5 | LAUNCH
4 HRS 55 MIN 35.0005EC | | | X
0.13661330E
D1
0.13659246E C1 | Y
1 -0.28408573E 01
1 -0.28406720E 01 | 2
-0.19321073E C1
-0.19325328E C1 | XDDT
0.17172230E 31
9.17171529E 01 | YDDT
-0.44153090E-01
-0.44130402E-01 | 2DOT
-0.75569730F 00
-0.75575657E 00 | RICC | | DIFFERENCES IN (SEMI-MAJOR 57/81260 00 | าระกา | | NODE | ARG PER IGEE | TPUE ANDW
151,22219467 RTCC | | | 57480212.50
57480212.50
1146.50 | 0.63429437
0.63429437
-0.00000044 | 32.57825661
-0.00708961 | 42.04310513
0.00763655 | 104.87936592
-0.00411606 | 151.22403908 TPW
-0.00184441 (RTCC-TRW) | Ş | | PERIDD
384.65481949
384.64331055
0.01150894 | APOGFE
12019, 34301758
12019, 12402344
0, 21899414 | PERIGEE
18.39968872
18.24142456
0.15826416 | | | RTCC
TRW
(RTCC-TRW) | = | | VEL -MAG
10908-5168
10908-2798
0-22706055 | FLT PATH
55.48561382
55.48569250
-0.00007868 | HEADING
98.72620583
98.72493935
0.00126648 | DECLIN
-31.50522399
-31.51293015
0.00770617 | LONG
41.08719444
41.08524084
0.00195360 | HEIGHT
9291.81921387 RTCC
9291.82946777 TRW
-0.01025391 (RTCC-TRW) | Ş | | | | | | | | | (FT, FT/SEC) MAGNITUDE OF VECTOR DIFFERENCE DELTA POS DELTA VEL 10647. 0.55 RTCC TRW -0.68251608E 00 -C.68255240E 00 TIME FROM LAUNCH 0 DAYS 5 HRS 1 MIN 29.000SEC **ZD07** 0.61513070E-01 0.61524975E-01 YDOT 0.16633454E 01 0.16632906E 01 APOLLO RICC COMPARISON MS MAN ACC NO UPD LEDIT ZITER VEH 1 -0.20027731E 01 -0.20032229E 01 TIME U.T. 4/ 4/68 17 HRS 1 MIN 30.000 SEC -0.28399425E 01 05/22/68 PREC 069 51 OBS 0.15323656E 01 0.15321448E 01 | -TRW) | -TRW) | -TRW) | |---|---|---| | RTCC
TRW
(RTCC | RTCC
TRW
(RTCC-TRW) | RTCC
TRW
(RTCC | | TRUE ANDM:
153.51567459 RTCC
153.51728249 TRW
-0.00160789 (RTCC-TRW) | | HEIGHT
9638.58630371 RTCC
9638.59216309 TRW
-0.00585938 (RTCC-TRW) | | ARG PERIGEE
104.87469006
104.88003826
-0.00534821 | | LONG
42.27608109
42.27428150
0.00179958 | | NOBE
42.05096960
42.04211950
0.00885010 | | DECLIN
-31.82511759
-31.83308721
0.00796962 | | S (RTCC - TRW)
INCL
32.57084560
32.57813597
-0.00729036 | PERIGEE
18.37121582
18.23095703
0.14025879 | HEADING
97.32552910
97.32327652
0.00225258 | | DIFFERENCES IN OSCULATING ELEMENTS
SEMI-MAJOR ECCEN
57481115.00 0.63428639
57480110.00 0.63429482
1005.00 -0.00000843 | APUGEE
12019, 29125977
12019, 10058594
0, 19067383 | FLT PATH
56.80119228
56.80138254
-0.00019026 | | DIFFERENCES IN SEMI-MAJOR 57481115.00 5748010.00 | PER IND
384.65237808
384.64227295
0.01010513 | VEL-MAG
10456.9415
10456.7291
0.21240234 | | | | | | | DEL TA WONT | 0.32 | |--|-------------|--------| | /SEC) | DELTA VOOT | 0.21 | | TRW VECTORS IN UVW COORDINATES (FT,FT/SEC) | DELTA UDOT | 0.07 | | VECTORS IN UVW C | DELTA W | 11235. | | EN RTCC AND TRW | DELTA V | 693. | | DIFFERENCE RETWE | DELTA | -36. | (FT,FT/SEC) MAGNITUDE OF VECTOR DIFFERENCE DELTA POS DELTA VEL 11256. APOLLO RICC COMPARISON MS MAN ACC UPDATE ZEDIT ZITER VEH 1 05/22/69 ASCC 069 80 08S | | RTCC | ŝ | | Ş | |----------------------------------|--|--|--|---| | | | RTCC
TRW
(RTCC-TRW) | RTCC
TRW
(RTCC-TRW) | RTCC
TRW
(RTCC-TRW) | | SEC | ё
60
90 | RTCC
TRW
(RTC) | RTCC
TRW
(RTC) | RTCC
TRW
(RTC) | | 1
2 MIN 41.000SEC | ZDDT
-0.66806098E
-0.66805279E | | & F - | | | 41 | ZDOT
68060
68052 | TRUE ANDM
153.96831894
153.96916008
-0.00084114 | | HEIGHT
05.88586426
05.89880371
-0.01293945 | | N I | 9.9 | TRUE ANDM
53.968318
53.969160
-0.000841 | | HE IGHT *88586 *89880 | | ICH
1 | | 153
153 | | HEIGHT
9705.88586426
9705.89880371
-0.01293945 | | TIME FROM LAUNCH
0 DAYS 5 HRS | YDDT
0.82007630E-01
0.82000770E-01 | | | σ σ | | O | YDDT
00763
00077 | 4RG PERIGEE
104.87115574
104.88017464
-0.00901890 | | 804
271
533 | | IME FRO | 8200
8200 | ER 16
7115
8017
0901 | | LONG
2.50276804
2.50129271
0.00147533 | | TIMO | 00 | RG PERIGEE
04.87115574
04.88017464
-0.00901890 | | LONG
42.50276804
42.50129271
0.00147533 | | | 01 | 4 ∈ ∈ | | 4 4 | | | | 24 4 | | w 20 w | | | X00T
52138
52121 | 9956
927
0682 | | IN
993
593
593 | | | x00T
0.16521389E
0.16521211E | NODE
42.05399561
42.04192734
0.01206827 | | DECLIN
-31.88199353
-31.88959336
0.00759983 | | | c ó | 44 | | -31.
-31. | | | 01 | _ | | | | | 7
-0.20162967E
-0.20167286E | (RTCC - TRW)
INCL
32.57155180
32.57811463
-0.00656223 | 620
701 | 104
517
587 | | | 2
1629
1672 | TCC - TRW
INCL
•57155180
•57811463 | PERIGEE
18.29635620
18.22918701
0.06716919 | EADING
•04887104
•04454517
•00432587 | | |). 20
). 20 | | 0.0
0.0
0.0 | HEA
97.0
97.0 | | SEC | 77 | OSCULATING ELEMENTS (R
ECCEN
0.63429086
0.63429490
-0.00000405 | | o o | | 2 MIN 42.000 SEC | 00 | MEN
36
50 | 8 m kg | 0.60 | | 45. | 1020 | ATING ELEM
ECCEN
0.63429086
0.63429490
0.00000405 | APCGEE
9.18798828
9.09692383
0.09106445 | FLT PATH
57.08557320
57.08572149
-0.00014830 | | 2 | 3385
3383 | TING
ECCEN
•6342
•6342 | APCGEE
9.1879
9.0969
0.0910 | FLT PATH
7.085573
7.085721
0.000148 | | <i>€</i> | Y
-0.28385020E
-0.28383109E | ULA
O | APCGEE
12019.18798828
12019.09692383
0.09106445 | 57.
57. | | HR S | | | | | | TIME U.T.
4/ 4/68 17 HRS | Е 01
Е 01 | CES IN WAJOR 574.00 093.00 481.00 | 832
892
941 | 639
486
645 | | TIME U.T.
4/ 4/68 | X
0.15654997E
0.15652990F | FERENCES IN
SEMI-MAJOR
5748C574.00
5748C093.00 | PER IOD
384.64693832
384.64210892
0.00482941 | VEL-MAG
10369.7639
10369.6486
0.11535645 | | IME
4 | X
565
565 | ERE
SEMI
5748 | PER TOD
34.64693
34.64210
0.0048 | VEL
103
103
0.1 | | 14 | 00 | DIFFERENCES IN
SEMI-MAJOR
5748C574.00
57480093.00 | | | | | | | | | DELTA WDOT -0.02 DELTA VDOT DIFFERENCE RETWEEN RICC AND TRW VECTORS IN UVW COORDINATES (FT,FT/SEC) DELTA U DELTA V DELTA W DELTA UDOT DELTA W DELTA U A35. 10730. MAGNITUDE OF VECTOR DIFFERENCE (FT.FT/SEC) DELTA POS 10739. 0.12 APOLLO RICC COMPARISON MS MAN ACC NO UPD 2EDIT 211FR VEH 1 05/22/68 ACNS 070 63 08S | | RTCC | 3 at | TRW.) | TRW) | |---|---|---|--|---| | OSEC | 4E 00 | RTCC
TRW
12 TCC | RTCC
TRW
(RTCC-TRW) | RTCC
TRW
(RTCC-TRW) | | MIN 11.000SEC | 200T
-0.56876864E
-C.5687392 ^F E | TRUE ANDM
157.04615974
157.04698181
-0.00082207 | | HEIGHT
10152.31994629
10152.32495117
-0.00500488 | | AIINCH
HRS 1 | E 00 | F 25 7 | | 1015 | | TIME FROM LAHNCH
O DAYS 5 HRS 11 | YDOT
0.21833035E
0.21831415E | ARG PERIGEE
104.87207794
104.88111782
-3.00903988 | | LONG
43.98257303
43.98138142
0.00119162 | | | E 01 | | | | | | XDOT
0.1512612E
0.15712532E | NODE
42.05273438
42.04C61862
0.01211596 | | DECLIN
-32.20864296
-32.2160389
0.00736094 | | | 01 | | | | | D
U | 7
-0,21038373F
-0,21042671E | S (RTCC - TRW)
INCL
32.57142639
32.57799530
-0.00656891 | PERIGEE
18.28619385
18.21890259
0.06729126 | HEADING
95.13195705
95.12705612
0.00490093 | | TIME U.T.
4/ 4/68 17 HRS 11 MIN 12.000 SEC | V
-0.28170549E 01
-0.28168652E 01 | DIFFERENCES IN DSCULATING ELEMENTS (R
SEMI-MAJOR ECCEN
5748C484.00 0.63429137 32
57479994.00 0.63429536 32
57479994.00 -0.00000399 -0 | APDGEE
12019.16845703
12019.07446289
0.09399414 | FLT PATH
59.25883007
59.25908709
-0.00025702 | | TIME U.T.
4/ 4/68 17 Hi | X
0.17938586E 01
0.17936556E 01 | DIFFERENCES IN C
SEMI-MAJOR
5748C484.C0
57479994.C0
57479994.C0 | PER IND
384.64604187
384.64112473
0.0C491714 | VEL-MAG
9795.7921
9795.6790
0.11315918 | | | | | A | -18 | DELTA WOOF -0.16 DELTA VOOT DIFFERENCE BETWEEN RTCC AND TRW VECTORS IN UVW COORDINATES (FT,FT/SEC) DELTA U DELTA U DELTA U 0.04 10698. (FT, FT/SEC) 498. MAGNITUTE OF VECTOR DIFFFRENCE DELTA POS DELTA VEL APOLLO RTCC COMPARISON MS MAN ACC NO UPD 2EDIT 2ITER VEH 1 05/22/68 CROC 071 26 0BS | | RTCC | 3 | 3 | 3 | | |------------------------------------|--------------------------------------|---|--|---|---| | | 00
T | RTCC
TRW
(RTCC-TRW) | RTCC
TRW
(RTCC-TRW) | RTCC
TRW
(R TCC-TRW) | | |)SEC | | RTCC
TRW
(RTC) | RTCC
TRW
(RTC) | RTCC
TRW
(RTC | | | 23.000SEC | 200T
-0.47798868E
-0.47793634E | | | | 00T | | Z 23 | 77
4774
9774 | ANDA
9702
943
073 | | HEIGHT
•054199
•054931 | A WDG | | Z
Z
Z | 9 9 | TRUE
ANDM
159.83970261
159.84043312
-0.00073051 | | HEIGHT
34.05419922
34.05493164
-0.00073242 | DELTA WDOT
-0.33 | | LAUNCH
5 HRS 19 | 000 | | 3 | HEIGHT
10534.05419922
10534.05493164
-0.00073242 | - | | TIME FROM LAUNCH
O DAYS 5 HRS 1 | 165E
132E | 640 | | | E | | FROM | YDDT
0.33707065E
0.33704332E | ARG PERIGEE
104.87284946
104.88199806
-0.00914860 | | LONG
45.22314405
45.22224569
0.00089836 | C)
DELTA VOOT
0.09 | | IME FRI | | PER
872
881 | | LONG
22314
22224
0008 | ELTA | | F | | ARG
104- | | 4 4
N N O | SEC | | | E 01 | | | | ,FT/ | | | XDDT
0.14907617E
0.14907661E | 0093
4683
5410 | | DECLIN
2.41613913
2.42285347
0.0C671434 | S (FT
UDOT
0.04 | | | XDDT
45076
49076 | NODE
• 05160
• 0394 | | DECLIN
•41613
•42285
•00671 | TA | | | 000 | NODE
42.05160093
42.03944683
0.01215410 | | DECLIN
-32.41613913
-32.42285347
0.00671434 | DINA | | | 55 | | | 1 1 | COORDINATES (FT,FT/SEC) DELTA UDOT 0.04 | | | | FRW) | 112
390
723 | 392
841
551 | 3 | | | 533
573 | TCC - TRW)
INCL
•57175064
•57792187
•00617123 | .27365
.212495
.06115 | EADING
•36911392
•36364841
•00546551 | RS IN OPELTA 1 | | | Z
-0.21753370E
-0.21757385E | (RTCC - TRW
INCL
32.57175064
32.57792187
-0.00617123 | PERIGEE
18.27365112
18.21249390
0.06115723 | HEAL
93.36
93.36 | ORS
DEL
100 | | SEC | 0 0 | | gand gand | ⊕ .
• | VECT | | 000 | 66 | DSCULATING ELEMENTS
ECCEN
0.63429192
0.63429562
-0.00000370 | 224 | 8 6 16 | ™ | | MIN 24.000 | Y
-0.27789602E
-0.27787850E | LATING ELEM
ECCEN
0.63429192
0.63429562
-0.00000370 | APDGEE
12019.14123535
12019.05957031
0.08166504 | FLT PATH
61.61565018
61.61597109
-0.00032091 | AND 1 | | Z | 7
7789
7787 | TING
ECCEN
• 6342
• 6342 | APUGEE
9.1412
9.0595
0.0816 | FLT PATH
1.615650
1.615971
0.000320 | CC AND
DELTA V
540. | | | 00 | 5
4 000 | 2019
2019 | 61
61
-0 | α
2 | | HRS | 0110 | | | | W
E | | 17 | | CES IN
MAJUR
363.00
929.00
434.00 | 2498
6478
6020 | 6
4265
3259
8594 | | | r. T. | 3111 | FERENCES IN
SEMI-MAJOR
57480363.00
57479929.00
434.00 | PERIOD
4.64482498
4.64046478
0.00436020 | VEL-MAG
9308.4265
9308.3259
0.10058594 | RENCE B
DELTA ()
-6. | | TIME U.T.
4/ 4/68 17 HRS 19 | X
0.20031110E
0.20029184E | DIFFERENCES IN
SEMI-MAJOR
5748G363.00
57479929.00 | PERIOD
384.64482498
384.64046478
0.00436020 | > 0 | DIFFERENCE BETWEEN RTCC AND TRW VECTORS IN UVW
DELTA () DELTA V DELTA W
-6. 540. 10000. | | F 7 | 00 | DIF | las laj | | 110 | | | | | | 40 | | (FT,FT/SEC) MAGNITUCE OF VECTOR DIFFERENCE DELTA POS DELTA VEL 10015. 0.34 APCLLO RTCC COMPARISON MS MAN ACC NO UPD LEDIT 2ITER VEH 1 05/22/68 PREC 073 67 ORS | | RTCC
TR¥ | | X | (A) | 3 | |---|--------------------------------------|---|-----------------------|--|--| | ي | 000 | <u>ن</u> _ | (R TCC-TRW) | RTCC
TRW
(RTCC-TRW) | RTCC
TRW
(RTCC-TRW) | | OOSE | 70E
38E | RTCC
TRW | | RTCC
TRW
(RTC | R TCC
TRW
(RTC) | | MIN 47.000SEC | ZDOT
-0.3790067CE
-0.37893038E | JM
5868
7712 | -0.00060844 | * | r
2891
5680
5211 | | ZI | 37. | TRUE ANOM
62.871568
62.872177 | 9006 | | HEIGHT
4.74462891
4.74096680
0.00366211 | | c o | | TRUE ANOM
162.87156868
162.87217712 | 0 | | HEIGHT
10914.74462891
10914.74096680
0.00366211 | | LAUNCH
5 HRS 28 | Е 90 | | | | 109 | | Σ | YDOT
0.46022635E
0.46018731E | EE
322
942 | 620 | | 952
772
180 | | IME FRO | YD
4602
4601 | ER 16
7316
8299 | 0983 | | LONG
6.45750952
6.45688772
0.00062180 | | TIM | 0.0 | ARG PERIGEE
104.87316322
104.88299942 | -0.00983620 | | LONG
46.45750952
46.45688772
0.00062180 | | | 01 | A H H | • | | 7 7 | | | 7
393E
373E | 881
985 | 1 69 7 | | 229
166
33.7 | | | XDOT
0.13959893E
0.13960073E | 76
3098
38159 | 0.01282597 | | DECLIN
2.54336929
2.54978466
0.00641537 | | | 0.13 | NODE
42.05098581
42.03815985 | 0.0 | | DECLIN
-32.54336929
-32.54978466
0.00641537 | | | 01 | 4.4 | | | <u>n</u> n | | | | RM 83 | 74 | 58 | 71 | | | Z2424019E
22427948E | (RTCC - TRW
INCL
32.57171583
32.57787657 | .00616074
ERIGEE | .25881958
.20504761
.05377197 | E4006348
•43373871
•00632477 | | | .224 | RTCC
INCL
2.571
2.577 | 0.00616
PERIGEE | 8.25
8.25
0.05 | HEAD
11.44
11.43
0.00 | | SEC | ဝိုင် | DSCILATING ELEMENTS (R
ECCEN
0.63429272 32
0.63429608 32 | 0 0 | 8 8 0 | 916
0 | | 000 | 011 | IMEN
72
38 | 36 | 7.0.4
7.0.4 | 3 2 E | | 48. | Y
-0.27163396E
-0.27161688E | ATING ELEM
ECCEN
0.63429272
0.63429608 | -0.00000336
APOGEE | 9.11657715
9.04980469
0.06677246 | FLT PATH
64.62381554
64.62416935
-0.00035381 | | Z
7 | Y
7116
71161 | TING
ECCEN
(-6342).6342 | 0.0000
AP NGFE | 0.04 | FLT PATH
4.623815
4.624169
0.000353 | | 28 | 00 | COLLA | O A | 12019,11657715
12019,04980469
0.06677246 | 7,40 | | TIME U.T.
4/ 4/68 17 HRS 28 MIN 48.000 | 01 | | | | et a ñ | | T. 17 | | FERENCES IN
SEMI-MAJOR
57480242.50
57479877.00 | 365.50
nn | 384.63951572
384.63994980
0.00366592 | VEL -MAG
8823.5261
8823.4429
0.08325195 | | TIME U.T.
4/ 4/68 | X
2927
2908 | RE NC
MI - M
4798 | 36
PER 100 | 643
639
003 | VEL-MAG
8823.5
8823.4
0.08325 | | T1M | X
0.22292710E
0.22290818E | DIFFERENCES
SEMI-MAJO
57480242。
57479877。 | مَ | 384
384
0 | > 0 | | | | O | | | | DELTA WOOT DELTA VDOT DIFFERENCE BETWEEN RTCC AND TRW VECTORS IN UVW COCRDINATES (FT,FT/SEC) DELTA U DELTA U DELTA U 551. 9785. 0.03 -0.50 (FT,FT/SEC) MAGNITURE OF VECTOR DIFFERENCE DELTA VEL DEL TA PRIS 9 800. | | RICC | (Ratio | -TRW) | -TRW) | |---|---|---|--|--| | OSEC | 31E 00
37E 00 | RTCC
TRW
RRTCC-TRW | RTCC
TRW
(RTCC-TRW) | RTCC
TRW
(RTCC-TRW) | | H
30 MIN 41.000SEC | ZDOT
-0.35958181E
-0.35949787E | TRUE ANDM
163.46569824
163.46622658
-0.00052834 | | HEIGHT
10984.49255371
10984.48950195
0.00305176 | | LAUNCH
5 HRS 30 | 1E 00
7E 00 | | | | | TIME FROM LAUNCH
O DAYS 5 HRS 30 | YDDT
0.48363431E
0.48358937E | ARG PERIGEE
104.87307453
104.88325882 | | LONG
46.68576384
46.68522453
0.00053930 | | | E 01 | | | | | | xDOT
0.13765348E
0.13765584E | NODE
42.05C96960
42.03784943 | | DECLIN
-32.55558722
-32.56268263
0.00609541 | | • | 100 | atition | | • • | | EC SE | Z
-0.22541110E
-0.22544861E | S (RTCC - TRW) INCL 32.57196999 32.57787085 | | HEADING
91.06098557
91.05438614
0.00659943 | | TIME U.T.
4/ 4/68 I7 HRS 30 MIN 42.000 SEC | v
-0.27013872E 01
-0.27012246E 01 | OSCULATING ELEMENTS
ECCEN
0.63429314
0.63429686 | APUGEE
12019.10607910
12019.05371094
0.05236816 | FLT PATH
65.27068710
65.27094555
-0.00025845 | | TIME U.T. 4/ 4/ 68 17 HRS | X
0.22731612E 01
0.22729909E 01 | 01FFERENCES IN 08
SEMI-MAJOR
57480189.00
57479864.00 | | VEL-MAG
8724.6394
8724.5640
0.07543945 | DELTA WOOT -0.56 DELTA VDOT DIFFERENCE RETWEEN RTCC AND TRW VECTORS IN UVW COORDINATES (FT,FT/SEC) DELTA H DELTA W DELTA W DELTA W 18. 525. 9336. (FT,FT/SEC) MAGNITUCE OF VECTOR DIFFERENCE DELTA POS DELTA VEL 9350. 0.57 | 2.2 | | RTCC TRW | RTCC
TRW
(RTCC-TRW) | RTCC
TRW
(RTCC-TRW) | |--|---|---|---|--| | PAGE 22 | 29.000SEC | 2007
134942E 00
125053E 00 | | RTCC
TRW
(RTCC | | | Z | Z00T
-0,30134942E
-0,30125053E | TRUE ANDM
165.24562263
165.24604988
-0.00042725 | | | | H LAUNCH
5 HRS 36 | 00 | 16.1 | | | | TIME FROM LAUNCH
0 DAYS 5 HRS 3 | YDOT
0.55229134E
0.55224292E | ARG PERIGEE
104.87310219
104.88376427
-0.01066208 | | | | | 01 | A | | | VEH 1 | | XDUT
0.13165635E
0.13165960E | NODE
42.05C72880
42.03720856
0.01352024 | | | 2ITER 1 | | 01 | | | | RISON
1 EDIT | Ų | Z
-0.22860478E
-0.22864096E | (RTCC - TRW)
INCL
32.57204962
32.57786798
-0.00581837 | PERIGEE
18.24072266
18.20721436
0.03350830 | | 0 ON . | O SE | 01 | ENTS | : | | APOLLO RTCC COMPAIRS MS MAN ACC NO UPD | TIME U.T.
4/ 4/68 17 HRS 36 MIN 30.000 SEC | V
-0.26512835E 01
-0.26511260E 01 | nSCULATING ELEMENTS (R'
ECCEN
0.63429375
0.63429578
-0.00000203 | APUGEE
12019.08886719
12019.04394531
0.04492188 | | 23 0 | 7 HR | 01 | 11 N O | 3 4 9 6 9 9 9 | | 05/22/68
ASCC 075 23 URS | TIME U.T. 4/ 4/68 1 | X
0.24033295E 01
0.24031571E 01 | DIFFERENCES IN
SEMI-MAJOR
57480103.50
57479865.50 | PER IND
384.64222336
384.63982773
0.00239563 | | | | | | · | | | DELTA WDOT | -0.66 | |---|------------|-------| | /SEC) | DELTA VDOT | 0.05 | | TRW VECTORS IN UVW COORDINATES (FT, FT/SEC) | DELTA UDOT | 0.03 | | VECTORS IN UVW C | DELTA W | *6668 | | RTCC
AND TRW | DELTA V | 472. | | DIFFERENCE BETWEEN RTCC AND 1 | DELTA II | 23. | (FT,FT/SEC) MAGNITUDE OF VECTOR DIFFERENCE DELTA VEL 0.67 DELTA POS 9012. 0.00366211 (RTCC-TRW) 11182.73181152 RTCC 11182.72814941 TRW HEI GHT 47.34348392 47.34313202 0.00035191 -32.57197094 0.00580311 HEADING 89.92415714 89.91705513 0.00710201 FLT PATH 67.32369614 67.32404327 -0.00034714 VEL-MAG 8481.7239 8481.6689 0.05493164 DECL IN LONG | 23 | | RTCC | X
W | TRW) | TRW | |--|---|---|--|--|--| | PAGE 2 | SEC | М
00
00 | RTCC
TRW
(RTCC-TRW) | RTCC
TRW
(RTCC-TRW) | RTCC
TRW
(RTCC-TRW) | | <u>.</u> | . MIN 35.000SEC | 2007
-0.21288579E
-0.21277648E | TRUE ANDM
167.94979858 R
167.95029259 T
-0.00049400 (| α - Ο | HEIGHT
11449.97656250 R
11449.96154785 T
0.01501465 (| | | LAUNCH
5 HRS 45 | 00 | 167 | | 11449
11449
0 | | | TIME FROM LAUNCH
0 DAYS 5 HRS 4 | YDOT
0.65226678E
0.65221610E | ARG PERIGEE
104.87436962
104.88460445
-0.01023483 | | LONG
48.27010822
48.26990700
0.00020123 | | | |)E 01
SE 01 | | | | | VEH 1 | | xDOT
0.12207060E
0.12207416E | NODE
42.04930162
42.03616047
0.01314116 | | DECLIN
-32.52754116
-32.53308916
0.00554800 | | TER | | C . | | | • • | | UMPARISON
UPD ZEDIT ZITER | J. | 7
-0.23249974E
-0.23253481E | S (RTCC - TRW)
INCL
32.57198620
32.57788277
-0.00589657 | PERIGEE
18.25109863
18.21752930
0.03356934 | HEADING
88.19714260
88.18989277
0.00724983 | | APOLLO RTCC COMPARISON
DRS MS MAN ACC NO UPD 2EDI | TIME U.T.
4/ 4/68 17 HRS 45 MIN 36.000 SEC | Y
-0.25598263E 01
-0.25596747E 01 | OSCULATING ELEMENTS (R1
ECCEN
0.63429295
0.63429473
-0.00000179
-0. | APGGEE
12019.09338379
12019.03613281
0.05725098 | FLT PATH
70.77300262
70.77353573
-0.00053310 | | 05/22/68
ASCC 076 74 0RS | TIME U.T.
4/ 4/68 17 HR | X
0.25957712E 01
0.25955993E 01 | DIFFERENCES IN C
SEMI-MAJOR
5748C149.00
57479873.00 | PER 10D
384.64267349
384.63990021
0.00277328 | VEL-MAG
8139.6456
8139.5922
0.05340576 | | | | | | A | -23 | DELTA WDOT -0.73 DELTA VDOT DIFFERENCE BETWEEN RICC AND TRW VECTORS IN UVW COORDINATES (FT,FT/SEC) OELTA IJ DELTA V DELTA W DELTA UDOT DEL 90. 544. 8749. (FT,FT/SEC) MAGNITUDE OF VECTOR DIFFERENCE DELTA POS DELTA VEL 8766. 0.73 APOLLO RTCC COMPARISON MS MAN ACC NO UPD 1EDIT 2ITER VEH 1 05/22/68 CRUS 077 38 NBS | | ,
U | | | | |------------------------------------|--|---|--|--| | | RTCC | RTCC
TRW
(RTCC-TRW) | RTCC
TRW
(RTCC-TRW) | RTCC
TRW
(RTCC-TRW) | | ပ္ | 000 |)
)
-
)
2,0 | |)
)
) | | 00 S | 78E
97E | | RTCC
TRW
(RTC | | | MIN 29.000SEC | ZDOT
-0.12929278E
-0.12916897E | M
881
564
684 | , | HEIGHT
0.69323730
0.67150879
0.02172852 | | N | ,129
,129 | ANG
1105
1153
0047 | | .69323
.67150
.02172 | | 4 | 99 | TRUE ANDM
170.51105881
170.51153564
-0.00047684 | | T . 0 0 | | LAUNCH
5 HRS 54 | 00 | FFF | | HEIGHT
11660.69323730
11660.67150879
0.02172852 | | TIME FROM LAUNCH
O DAYS 5 HRS 5 | YDDT
0.74195671E
0.74190114E | 0 8 8 | | 0, 80 = | | FROY | YDDT
1956
1901 | ARG PERIGEE
104.87502480
104.88537598
-0.01035118 | | LONG
49.07168579
49.07164478
0.00004101 | | IME FRO
O DAYS | .74 | PER
875
985
010 | | LDNG
0716
0716 | | F | 0.0 | ARG PERIGEE
104.87502480
104.88537598
-0.01035118 | | 0, 0,
0, 0 | | | 010 | | | | | | XDOT
0.11248045E
0.11248468E | 283
009
274 | | 700
291
592 | | | XDOT
12480-
12484 | NODE
2.04843283
2.03518009
0.01325274 | | DECLIN
2.41070700
2.41577291
0.00506592 | | | 00 | NODE
42.04843283
42.03518009
0.01325274 | | DECLIN
-32.41070700
-32.41577291
0.00506592 | | | 01 | 4 4 | | <u>, </u> | | | | RW 733 | 91 | 37
77 | | | 352
3676 | TCC - TRWI
INCL
57217073
57792187
00575113 | RIGEF
25158691
22399902
02758789 | ADING
56831837
56069660
00762177 | | | 2
-0.23503527E
-0.23506767E | 1CC
INCL
•572
•577 | PERIGEF
8.25158
8.22399
0.02758 | HEADING
86.56831837
86.56069660
0.00762177 | | <u>ت</u> | ဝှင် | OSCULATING ELEMENTS (RTCC - TRW) | 2 & & O | 86.
00. | | 30.000 SEC | 01 | E Z | | | | 0.00 | Y
-0.24563246E
-0.24561852E | LATING ELEM
ECCEN
0.63429275
0.63429404
-0.00000129 | APDGEE
12019.08581543
12019.02917480
0.05664063 | FLT PATH
74.39470387
74.39533138
-0.00062752 | | M IN | Y
5632
5618 | ATING ELEI
ECCEN
0.6342927
0.6342940 | APOGEE
12019.0858154
12019.0291748
0.0566406 | FLT PATH
74.3947038
74.3953313
-0.0006275 | | 4
M | 245 | LATI
PEC
0.6 | 19.0
19.0 | 74°37 | | HRS 54 | 99 | nosu | 120 | | | 17 H | 10 | | 95 | 831 | | F | 518E
906E | FERENCES IN
SEMI-MAJOR
57480127.50
57479871.50 | PER 100
384.64245987
384.63988495
0.00257492 | VEL-MAG
7868-4391
7868-3981
0.04107666 | | TIME U.T. | ×
697
695 | M 1 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | PER 100
4.6424
4.6398
0.0025 | VEL-MAG
7868.4
7868.3
0.04107 | | T11 | X
0.27697518E 01
0.27695906E 01 | DIFFERENCES IN
SEMI-MAJOR
57480127.50
57479871.50 | 384
384
0 | > 0 | | | ************************************** | 6 | | | | | | | | | DELTA WOOT DELTA VDOT 0.03 DIFFERENCE BETWEEN RTCC AND TRW VECTORS IN UVW COORDINATES (FT,FT/SEC) DELTA U DELTA V DELTA W DELTA UDOT 131. 543. 8095. 0.05 DELTA U -0.82 (FT,FT/SEC) MAGNITUDE OF VECTOR DIFFERENCE DELTA POS DELTA VEL 0.83 8114. | .•0 | | RTCC | TR4) | TRW) | TRW) | |---|----------------------------------|--|--|--|--| | PAGE 26 | SEC |)E-01
5E-01 | RTCC
TRW
(RTCC-TRW) | RTCC
TRW
(RTCC-TRW) | RTCC
TRW
(RTCC-TRW) | | _ | MIN 23.000SEC | 2DGT
-0.39090740E-01
-0.38939215E-01 | TRUE ANDM
173.28785324
173.28802109
-0.00016785 | | HEIGHT
11837.40246582
11837.40002441
0.00244141 | | | • | 000 | TRU
173.
173. | | H
11837.
11837.
0. | | | TIME FROM LAUNCH
O DAYS 6 HRS | YDOT
0.83348498E
0.83341525E | ARG PERIGEE:
104.87397003
104.88619518
-0.01222515 | | LONG
49.86563730 1
49.86577368 1
-0.00013638 | | | | 01 | A H H | | , | | VEH 1 | | XDOT
0.10154420E
0.10155054E | NODE
42.04910564
42.03412485
0.01498079 | | DECLIN
-32.20300388
-32.20679760
0.00379372 | | | | 01 | | | • • | | APOLLO RTCC COMPARISON
MS MAN ACC NO UPD 1EDIT 3ITER | () | Z
-0.23642614E
-0.23645096E | (RTCC - TRW)
INCL
32.57300425
32.57798910
-0.00498486 | PERIGEE
18.21685791
18.22784424
-0.01098633 | HEADING
84.81751347
84.80874920
0.00876427 | | 00 00 00 00 00 00 00 00 00 00 00 00 00 | O SEC | 010 | FILENTS | - A. A. | C 10 10 | | APOLLO RTO
OBS MS MAN ACO | RS 4 MIN 24.000 SEC | Y
-0.23262137E
-0.23261094E | OSCULATING ELEMENTS
ECCEN
0.63429481
0.63429362
0.00000119 | APOGEE
12019.03698730
12019.02441406
0.01257324 | FLT PATH
78.67121220
78.67153645
-0.00032425 | | 05/22/68
PREC 078 80 (| TIME U.T.
4/ 4/68 18 HRS | X
0.29463278E 01
0.29462098E 01 | DIFFERENCES IN (
SEMI-MAJOR
57479873.50
57479868.50 | PER IOD
384.63991165
384.63985825
0.00005341 | VEL-MAG
7639.5567
7639.5585
-0.00177002 | DELTA WOOT -1.04 DELTA VOOT -0.00 DIFFERENCE BETWEEN RTCC AND TRW VECTORS IN UVW COORDINATES (FT,FT/SEC) DELTA U DELTA U DELTA U 0.01 6138. 373. (FT, FT/SEC) MAGNITUDE OF VECTOR DIFFERENCE DELTA POS DELTA VEL 1.04 TIME FROM LAUNCH 0 DAYS 6 HRS 6 MIN 11.000SEC APOLLO RICC COMPARISON MS MAN ACC NO UPD LEDIT 2ITER VEH 1 05/22/68 CRUC 079 78 0BS 6 MIN 12.000 SEC TIME U.T. 4/ 4/68 18 HRS | U | | | | |--|---|--|---| | RTCC | E RA | TRW) | TRW) | | -01 | RTCC
TRW
(RTCC-TRW) | RTCC
TRW
(RTCC-TRW) | RTCC
TRW
(RTCC-TRW) | | 60E. | | RTCC
TRW
(RTC | | | 2007
9556
8006 | 0M
9221
7614
8392 | , | f
8711
1406
2695 | | 2007
-0.22955660E-01
-0.22800610E-01 | TRUE ANDM
73.78639221
73.78647614
-0.00008392 | • | HEIGHT
63.08178711
63.08691406
-0.00512695 | | | TRUE ANOM
173.78639221
173.78647614
-0.00008392 | | HEIGHT
11863.08178711
11863.08691406
-0.00512695 | | E 00 | | | 8 8 | | YDOT
0.84927192E
0.84920001E | E 205 | | 500 | | YDDT
149271
149200 | ARG PERIGEE
104.87380219
104.88634205
-0.01253986 | | LONG
50.00079632
50.00091600
-0.00011969 | | 00 | 6 PE | | 0000 | | 00 | 10
10 | | in in 1 | | | * = 1 | | 400 | | XD0T
5233
5301(| 11428
19384
52044
 | IN
325
3441
018 | | XDOT
0.99523376E
0.99530105E | NODE
42.04914284
42.03393841
0.01520443 | | DECLIN
-32.15732574
-32.16034412
0.00301838 | | 00 | 44 | | -32
-32
0 | | 010 | 5 | | | | 2
-0.23652365E
-0.23654355E | (RTCC - TRW
INCL
32.57370758
32.57800388
-0.00429630 | PERIGEE
18.20935059
18.22979736
-0.02044678 | HEADING
84.50512695
84.49632168
0.00880527 | | 2
3652
3654 | TCC -
INCL
2.5737
2.5780 | PER IGEE
8.20935
8.22979
0.02044 | HEADING
4.50512
4.49632
0.00880 | | 000 | 32.
10. | PER
18.2
18.2 | HE
84. | | | NTS | | • | | v
-0.23009512E 01
-0.23008695E 01 | LEME
520
344
177 | 371 | H
846
1113
267 | | V
-0.23009512E
-0.23008695E | ATING ELEM
ECCEN
0.63429520
0.63429344
0.00000177 | APUGEE
12019, 02380371
12019, 02380371
0. | FLT PATH
79.47252846
79.47274113
-0.00021267 | | 230. | A 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | AP CGE E 9. 0238 | F 4 4 0 0 | | 9 9 | ICSCUI | 1201 | 1-1-1 | | 610 | 2 000
2 000 | 400 | 43
08
08 | | X
0.29764650E
0.29763723E | FERENCES IN
SEMI-MAJOR
57479811.00
57479873.00 | PER IOD
384.63928604
384.63990402
-0.00061798 | VEL-MAG
7606.1637
7606.1743
-0.01055908 | | ×
76 4
76 3 | MI - 1 | PER 100
4.6392
4.6399
0.0006 | VEL -MAG
7606.1
7606.1
0.01055 | | 0.2 | DIFFERENCES IN OSCULATING ELEMENTS (RTCC - TRW) SEMI-MAJOR ECCEN INCL 57479811.00 0.63429520 32.57370758 57479873.00 0.63429344 32.57800388 -62.00 0.00000177 -0.00429630 | 388 | 7 | | | | | | DELTA WOOT DELTA VOOT -0.01 DIFFERENCE RETWEEN RTCC AND TRW VECTORS IN UVW COORDINATES (FT,FT/SEC) DELTA II DELTA V DELTA W DELTA UDOT DEL -31. 305. 4892. 0.00 -1.07 (FT,FT/SEC) MAGNITUDE OF VECTOR DIFFERENCE DELTA POS DELTA VEL 4901. 1.07 APOLLO RICC COMPARISON MS MAN ACC NO UPO 1EDIT 2ITER VEH 1 05/22/68 ASCC 080 72 NBS | | RTCC | 2 | Ã. | . | |----------------------------------|--|--|--|--| | LAUNCH
6 HRS 7 MIN 41.000SEC | 2007
00 -0.95616400E-02
00 -0.94079430E-02 | TRUE ANDM
174.20049095 RTCC
174.20062065 TRW
-0.00012970 (RTCC-TRW) | RTCC
TRW
(RTCC-TRW) | HEIGHT
11882,9859570 RTCC
11882,98693848 TRW
-0.00134277 (RTCC-TRW) | | TIME FROM LAUNCH
O DAYS 6 HRS | YDDT
00 0.86223459E
00 0.86216339E | ARG PERIGEE
104.87422943
104.88646507
-0.01223564 | | LONG
50.11153078
50.11161947
-0.00008869 | | | XDOT
0.97831831E 0
0.97838391E 0 | NODE
42.04871321
42.03378439
0.01492882 | | DECLIN
-32.11681080
-32.11969185
0.00288105 | | SEC | 7
-0.23656482E CI
-0.23658380E OI | IS (RTCC - TRW) INCL 32.57382107 32.57801676 -0.00419569 | PERIGEE
18.21691895
18.23153687
-0.01461792 | HEADING
84.24594879
84.23730183
0.00864697 | | 7 MIN 42.000 | Y
-0.22795535E 01
-0.22794771E 01 | 0SCULATING ELEMENTS
ECCEN
0.63429464
0.63429327
0.00000137 | APCGEE
12019.02868652
12019.02319336
0.00549316 | FLT PATH
80°14497185
80°14523697
-0°00026512 | | TIME U.T.
4/ 4/68 18 HRS | X
0.30011344E 01
0.30010435E 01 | DIFFERENCES IN C
SEMI-MAJOR
57479848.50
57479876.00 | PER 100
384.63965225
384.63993835
-0.00028610 | VEL-MAG
7580.2813
7580.2872
-0.00592041 | | | | | | 0.00 | DIFFERENCE BETWEEN RTCC AND TRW VECTORS IN UVW COORDINATES (FT,FT/SEC) DELTA U A47. A670. 0.01 (FT,FT/SEC) MAGNITUDE OF VECTOR DIFFERENCE DELTA POS DELTA VEL 4683. 1.06 DELTA WOOT DELTA VDOT -0.01 05/22/68 APPLLO RTCC COMPARISON CROS 082 80 085 MS MAN ACC NO UPD LEDIT 3ITER VEH 1 | | RTCC | | ÷ | · · | |-------------------------------------|---------------------------------------|--|--|--| | | | RTCC
TRW
(RTCC-TRW) | RTCC
TRW
(RTCC-TRW) | RTCC
TRW
(RTCC-TRW) | | S
S | 000 | RTCC
TRW | RTCC
TRW
(RTCC | RTCC
TRW
(RTCC | | 000 | 7
948
857 | | 222 | | | MIN 47.000SEC | ZNOT
0.21720948E
0.21736857E | TRUE ANDM
81.30566406
81.30591965 | • | HEIGHT
2.07604980
2.05883789
0.01721191 | | Z | 0.0 | TRUE ANDM
81.30564
81.305919 | | HEIGHT
07694
05883 | | m | · | TRUE ANDM
181.30566406
181.30591965
-0.00025558 | | HEIGHT
12012.07604980
12012.05883789
0.01721191 | | TIME FROM LAUNCH
O DAYS 6 HRS 33 | 3E 01 | | | | | 1 W 0 | YDOT
0.10625653E
0.10624945E | EE
503
299 | | LONG
51.83526230
51.83532715
-0.00006485 | | E FR | YD
1062
1062 | ARG PERIGEE
104.87730503
104.88844299
-0.01113796 | | LONG
83526
83532
00006 | | TIM | 00 | 0440
9890 | | 9.8.60 | | | 000 | A H H | | והנה | | | | & r ic | | w 8 4 | | | XDOT
05876
C6533 | 080]
239(| | 11926
0469
853 | | | XDUT
0.67058766E
0.67065333E | NODE
42.04508018
42.03123903
0.01384115 | | DECLIN
-31.13519263
-31.13704658
0.00185394 | | | 00 | 44 | | -31 | | | 010 | _ | | | | | 23201180E | (RTCC - TRW
INCL
32.57424974
32.57832384
-0.00407410 | ERIGEE • 26196289 • 26879883 | EADING
•90354824
•89522171
•00832653 | | | 2
3201
3202 | TCC -
INCL
•5742
•5783 | ERIGEE
• 26196
• 26879
• 00683 | EADING
• 90354
• 89522
• 00832 | | | -0.23 | 18 18 18 18 18 18 18 18 18 18 18 18 18 1 | 18.2
18.2 | HEA
79.9
79.8 | | SEC | | OSCULATING ELEMENTS (R
ECCEN
0.63429087 32
0.63429000 32
0.000000870 | | | | 000 | й
Е 01 | EME!
87
00
87 | 111 | 8857 | | 48 | V
-0.18592495E
-0.18592073E | ATING ELEM
ECCEN
0.63429087
0.63429000 | APOGEE
9.03491211
9.02050781
0.01440430 | FLT PATH
92.26216507
92.26259995
-0.00043488 | | Z | ¥
65.81
65.81 | TING
ECCEN
0.6342
0.6342
0.0000 | APOGEE
9.0349
9.0205
0.0144 | 2.26
2.26
3.00 | | 93 | 99 | COLL | APOGEE
12019.03491211
12019.02050781
0.01440430 | 1661 | | 18 HRS 33 MIN 48.000 SEC | 000 | | | ×0 ×+ === | | 18 | 72 E (| FERENCES IN
SEMI-MAJOR
57480004.50
57479981.50 | PER IND
4.64122772
4.64099121
0.00023651 | VEL-MAG
7411.8546
7411.8704
-0.01580811 | | U.] | ×
0.75
0.68 | FERENCES I
SEMI-MAJOR
57480004-5
57479981-5 | PER IND
4.6412
4.6409
0.0002 | VEL-MAG
7411.8
7411.8
0.01580 | | TIME U.T. | X
0.33607572E 01
0.33606899E 01 | DIFFERENCES IN
SEMI-MAJOR
57480004.50
57479981.50 | PER IND
384.64122772
384.64099121
0.00023651 | V | | - | 00 | 10 | | | DELTA WDOT -1.08 DELTA VDOT -0.02 DIFFERENCE RETWEEN RTCC AND TRW VECTORS IN UVW COORDINATES (FT,FT/SEC) DELTA U DELTA U 104. 442. 3007. APOLLO RTCC COMPARISON MS MAN ACC NO UPD 1EDIT 3ITER VEH 1 05/22/68 CROS 083 80 08S | | RTCC | <u> </u> | 3 | 3 | |---|--|---|--|--| | TIME FROM LAUNCH
O DAYS 6 HRS 57 MIN 35.000SEC | 000 | RTCC
TRW
(RTCC-TRW) | RTCC
TRW
(RTCC-TRW) | RTCC
TRW
(RTCC-TRW) | | | 2007
0.41865797E
0.41880705E | TRUE ANDM
187.83651352
187.83587973
-0.00036621 | | HEIGHT
11772.62390137
11772.58483887
0.03906250 | | | T
904E 01
275E 01 | | | | | | YNOT
0.12081904E
0.12081275E | ARG PERIGEE
104.88095951
104.89001656
-0.00905704 | | LONG
53.28118944
53.28120995
-0.00002050 | | | XDDT
0.36139829E 00
0.36145605E 00 | NODE
42.04060507
42.02905846
0.01154661 | | DECLIN
-29.77729797
-29.77864742
0.00134945 | | TIME U.T.
4/ 4/68 IR HRS 57 MIN 36.000 SEC | E 01 | | ⊷ 4 ∞ | | | | 2
-0.21939198E
-0.21940045E | (RTCC - TRW)
INCL
32.57470894
32.57873821
-0.00402927 | PERIGEE
18.32189941
18.31655884
0.00534058 | HEADING
76.13985157
76.13255024
0.00730133 | | | v
-0.14077850E 01
-0.14077612E 01 | OSCULATING ELEMENTS
ECCEN
0.63428590
0.63428604
-0.00000014 | APUGEE
12019,04541016
12019,02868652
0,01672363 | FLT PATH
103.10002041
103.10059738
-0.00057697 | | | x
0.35665343E 01
0.35664775E 01 | DIFFERENCES IN O
SEMI-MAJOR
57480218.50
57480151.50
67.00 | PER 100
384.64336395
384.64270020
0.00066376 | VEL-MAG
7723.6985
7723.7307
-0.03222656 | | | ~ | | Α. | -29 | DELTA WDOT -1.00 DELTA VDOT -0.02 DIFFERENCE RETWEEN RTCC AND TRW VECTORS IN UVW COORDINATES (FT,FT/SEC) DELTA U DELTA U 2121. 464 (FT, F1/SEC) MAGNITUDE OF VECTOR DIFFERENCE DELTA POS DELTA VEL 2190. 1.00 | | RTCC | |---|--| | 1 MIN 35.000SFC | 200T
0.62299569E 00
0.62312329E 00 | | TIME FROM LAUNCH
O DAYS 7 HRS 21 MIN 35.000SFC | YDOT
0.13205532F 01
0.13206161F 01 | | | XDOT
C.88421GOOE-02
C.89356606E-02 | | FC | 2
-0.19856762E 01
-0.19855712E 01 | | TIME U.T.
4/ 4/68 19 HRS 21 MIN 36.000 SEC | Y
-0.90084346E CO
-0.90080564E GO | | TIME U.T.
4/ 4/68 I9 HR | X
0.36422615E 01
0.36423187E 01 | APOLLO RICC COMPARISON MS MAN ACC NO UPD LEDIT 3ITER VEH 1 05/22/68 CROS 084 80 08S | RTČC | RTCC | |----------------|--| | TRW | TRW | | (RTCC—TRW) | (RTCC-TRW) | | α μ. | HEIGHT
11178.34619141
R
11178.31823730 T
0.02795410 (| | | LONG
54.91272688
54.91349554
-0.00076866 | | | DECLIN
-27.88912797
-27.88758206
-0.00154591 | | PERIGEE | HEADING | | 18.45193481 | 72.43975258 | | 19.28808594 | 72.43392277 | | -0.83615112 | 0.00582981 | | APNGEE | FLT PATH | | 12019.06750488 | 112.72458553 | | 12019.03820801 | 112.72132301 | | 0.02929688 | 0.00326252 | | PERIOD | VEL-MAG | | 384.64801025 | 8487-4701 | | 384.67261124 | 8488-1204 | | -0.02460098 | -0.65026855 | | | APRIGEE PERIGEE 12019.06756488 18.45193481 12019.03820801 19.28808594 0.02929688 -0.83615112 | DELTA WORT -C.67 DELTA VONT APPLLO RTCC COMPARISON 80 DBS MS MAN, ACC, NO UPD LEGIT 5 ITER VEH1 05/22/68 CROS 085 | | P TCC
TRW | -TRW) | -TRW) | TRW) | |-------------------------------------|---------------------------------------|--|--|---| | OSEC | 9E 00 | RTCC
TRW
(RTCC-TRW) | RTCC
TRW
(RTCC-TRW) | RTCC
TRW
(RTCC-TRW) | | i
5 min 29.000SEC | ZDOT
C.83356561E
C.83346508E | TRUE ANDM
202.51391602
202.51675034
-6.00283432 | , | HEIGHT
10214.27331543
1G214.32153320
-0.04821777 | | AUNCH
HRS 4 | 55 | 50 T | | 1021 | | TIME FROM LAUNCH
C DAYS 7 HRS 45 | YDOT
0.13915771E
0.13917219F | ARG PERIGEE
104.90632915
104.89933586
0.00699329 | | LONG
57.06304789
57.06471443
-0.00166655 | | | 0.0 | ∀ ⊶! | | | | | XDOT
-0.40379555F
-0.403815285 | NONE
42.00889015
42.01610518
-0.00721502 | | DECLIN
-25.32162714
-25.32C20140
-0.00142574 | | | 55 | 7 0000 | 410.00 | | | SEC | 7
-0.16958791E
-0.16957959E | S (RTCC - TRW)
INCL
32.58350372
32.57954502
0.00395870 | PERIGEE
18.61477661
19.36535645
-0.75057983 | HEADING
69.77551842
68.78029728
-0.00477886 | | S 000 | 00 | ELEMENTS
6215
9729
6486 | 5 1 4 | 0 = 0 | | HRS 45 MIN 30.000 | Y
-0.35912327E
-0.35902505E | OSCULATING ELE
ECCEN
0.6342621
0.6341972
C.00CC648 | APOGEE
12019.12561035
12019.12414551
0.00146484 | FLT PATH
120.3924121:
120.3884983
0.0039138 | | TIME U.T.
4/ 4/68 19 HF | X
0.35661208E 01
0.35661858E 01 | DIFFERENCES IN E
SEMI-MAJOR
57481352.00
57483627.50
-2275.50 | PERIOD
384.65475082
384.67759705
-0.02284622 | VEL-MAG
9716.7308
9717.1682
-0.43737793 | DELTA WORT 0.87 DELTA VDOT DIFFERENCE BETWEEN RTCC AND TRW VECTORS IN UVW COGRDINATES (FT,FT/SEC) DELTA U DELTA U DELTA U -2781. -1135. -0.07 (FT,FT/SEC) MAGNITUDE OF VECTOR DIFFERENCE DELTA VEL DELTA POS 3018. | | R TCC
TP¥ | | | TRHI | | | TRM) | | | | TRM) | | |--------------------|--------------------------------------|-----------------------------------|--|-------------|-------------------------|----------------|-------------|----------|--------------|--------------|--------------|--| | 29.000 SEC | 84E 01
26E 01 | | R TCC | | R TCC | TRM | (RTCC-TRW) | | RTCC | TRM | (RTCC-TRW) | | | Z Z | 2DOT
0.10576684E
0.10573726E | TRUE ANDM | 211.73385429 | -0.00216238 | | | | HEIGHT | 16.30651855 | 6.50500488 | -0.19848633 | | | UNCH | 10 | | 22 | • | | | | | 88 | 883 | , | | | TIME FROM LAUNCH | YDDT
0.14010234E
0.14012160E | ARG PERIGEE | 104.91623783 | 0.01655674 | | | | FONG | 60.29411364 | 60.29763794 | -0.00352430 | | | | 00 | | | | | | | | | | | | | | XDOT
-0.91654386E
-0.91664648E | NODE | 41.99442244 | -0.01946926 | | | | DECL IN | -21.69944859 | -21.69934893 | 996600000*0= | | | | 91
91
91 | 3 | و <u>د</u> | ត្រ | | | 0 | | | | 5 | | | EC | 2
-0.13181182E
-0.13181337E | S (RTCC - TRW)
INCL | 32.58984566
32.58061790 | 0.009227 | PERIGEE
18.7405700 | 19.46313477 | -0.72256470 | HEADING | 65.0678720 | 65.080476 | -0.01260471 | | | S 00 | 000 | FENT | + + | | ~ | | ~ | | iO | ٥: | ~ | | | S 9 MIN 30,000 SEC | Y
0.20204004E
0.20224670E | IN OSCULATING ELEMENTS
R ECCEN | 0.63425544
0.63419334 | 0.00006210 | APNGEE
12019.3405761 | 12019.35632324 | -0.01574707 | FLT PATH | 125,91699505 | 125.9125490 | 0.00444603 | | | 20 HRS | 0.01 | Z
Z
Z | 000 | S
S | 62 | 59 | 16 | | 0 | 03 | 4.8 | | | TIME U.T. | X
0,33062101E
0,33062533E | DIFFERENCES I
SEMI-MAJOR | 57482386.5 0
57484630. 00 | -2243 | PERIOD
384.6651306 | 384.6876525 | -0.0225219 | VEL-MAG | 11510.8901 | 11511.04 | -0.15014648 | | DELTA WOUT 0ELTA VDOT -0.29 DIFFERENCE BETWEEN RTCC AND TRW VECTORS IN UVW COCRDINATES (FT.FT/SEC) DELTA U -1206. -3919. 1678. -0.15 (FT, FT/SEC) MAGNITUDE OF VECTOR DIFFERENCE DELTA POS DELTA VEL 4430. 2.14 | 4 | | RTCC | TRW) | TRW) | -TRW) | |--|------------------|--------------------------------------|---|---|---| | PAGE | 5.000 SEC | 65E 01
20E 01 | PTCC
TRW
(RTCC-TRW | RTCC
TRW
(RTCC-TRW | RTCC
TRW
(RTCC-TRW) | | | W IN | 200T
0.12418865E
0.12414720E | TRUE ANDM
220.70501900
220.70817757
-0.00315857 | | HEIGHT
7450-37298584
7450-75507568
-0-39208984 | | | AUNCH
HRS 28 | 61 | 22.1 | | 745 | | TIME FROM LAUNCH
O DAYS 8 HRS 2 | TIME FROM LA | YDOT
0.13312793E
0.13314736E | ARG PERIGEE
104.92128181
104.89904499
0.02223682 | | LONG
64.16439915
64.17022896
-0.00582981 | | | | 10
10
10
10 | | | | | VEH 1 | | XDOT
-0.14242422E
-C.14243618E | NODE
41.98510551
42.01217127
-0.02706575 | | DECLIN
-17.76631552
-17.70885205
0.00253654 | | TER | | 00 | 5 | Ø 21 m | m .m | | OMPARISON
UPD 2EDIT 3ITER | EC. | 7
-0.96186107E
-0.962029C7E | S (RTCC - TRW
INCL
32.59451056
32.58176708
0.01274347 | PERIGEE
18.83001709
19.55020142
-0.72018433 | HEADING
62.17775488
62.19473171
-0.01697683 | |)
0
0
0
0 | OO SEC | 000 | MENT
22
83 | H 0 6 | t 7 m | | APOLLO RTCC COMPARISON
ORS MS MAN ACC NO UPD 2EDI | HRS 28 MIN 6.000 | Y
0.62792990E
0.62824336E | OSCULATING ELEMENTS (R
ECCEN
0.63425652
0.63419463
0.00006188 | APDGEE
12019.79602051
12019.81250000
-0.01647949 | FLT PATH
128.54469681
128.54001427
0.00468254 | | 80 | 20 HF | 010 | | 25.5
25.5
23.8
23.8 | 928
777
789 | | 05/22/68
CROS 087 | TIME U.T. | X
0.29465983E
0.29465989E | DIFFERENCES IN
SEMI-MAJOR
57484042.50
57436280.50 | PERIOD
384.6817512
334.7042236.
-0.0224723 | VEL-MAG
13436.0928
13435.8777
0.21508789 | | | | | | | | DELTA WOOT 2.73 DELTA VDOT 0.03 DIFFERENCE BETWEEN RTCC AND TRW VECTORS IN UVW COORDINATES (FT,FT/SEC) DELTA U DELTA W DEL (FT, FT/SEC) MAGNITUDE OF VECTOR DIFFERENCE DELTA POS DELTA VEL 7442. 2.75 OS/22/68 APOLLO RTCC COMPARISON CROS 088 80 08S MS MAN ACC NO UPD IEDIT 3ITER VEH I | | RTCC | | | 3 4 | • | | TRW | | | TRM | | |------------------------------------|--------------------------------------|------------------------------|--------------|----------------------------|-------------|----------------|-------------------------------|------------------------|---------------|-------------|--| | OSEC | 76 C3
55E 01 | | RTCC | TRW | | PTCC | TRW (RTCC-TRW) | PTC | TREC | (RTCC-TRW) | | | 4
36 MIN 11.000SEC | 700T
0.13239907E
0.13234255E | TRUE ANDM | 225,42842865 | 25.43039894 | - | | | HEIGHT | 6750.56939697 | -0.73559570 | | | AUNCH
HRS 36 | E 01 | g en | 6 | .2 | | | | 476 | 6.75 | , | | | TIME FROM LAUNCH
0 DAYS 8 HRS 3 | YPOT
0.12637659E
0.12639755E | APG PER IGEF | 104,93459506 | 104.89830589 | | | | LONG
44,44162415 | 66.47146988 | -0.00984573 | | | | 100
H | | | • | | | | | | | | | | XDOT
-0.16907400E
-0.16908308E | u. | 41,96601868 | 42.01145887
-0.04544020 | | | | DECLIN | -15.46061563 | 0.00891852 | | | | 000 | | | | | | | | | | | | J. | Z
-0.78839893E
-0.78889985E | S (RTCC - TRW | 32,60029745 | 32.58238029 | | 18.80941772 | 19.58905029 | HEADING
60,93173742 | 60.95679283 | -0.02505541 | | | SO SEC | 000 | ENTS | | . s. iv. | | ~ | | 10 | | • | | | 20 HRS 36 MIN 12.000 | Y
0.80327869E
0.80377241E | OSCULATING ELEMENTS
ECCEN | 0,63426521 | 0.63419854 | | 12020.15344238 | 12020.18786621
-0.03442383 | FLT PATH | 129,15085502 | 0.0051479 | | | 0 HR | 001 | | 00 | 000 |)
) | 50 | 100 | 0.0 |)
 | 40 | | | TIME U.T. | X
0.27367580E
0.27366997E | DIFFERENCES IN
SEMI-MAJOR | 57485066.00 | 57487539.00 | a cor o a d | 384 • 59202805 | 384.71685410
-0.02482605 | VEL-MAG | 14482,85 | 0.76916504 | | | | | | | | | | | 2.4 | | | | DELTA WOOT 3.45 DELTA VDOT 0.41 DIFFERENCE BETWEEN RICC AND TRW VECTORS IN UVW COCRDINATES (FT,FT/SEC) NELTA U -4472. -4288. 13406. MAGNITUDE OF VECTOR DIFFERENCE (FT,FT/SEC) DELTA POS DELTA VEL 14768. 3.54 | , 0 | | RTCC | 3 4 | TRWI | TRW) | |---|------------------------|--------------------------------------|--|---|---| | PAGE 3 | OSEC | 11E C1 | PTCC
TRW
(RTCC-TRW) | RTCC
TRW
(RTCC-TRW) | RTCC
TRW
(RTCC-TRW) | | | 4-
64 MIN 11.000SEC | Z00T
0.14038831E
C.14033227E | TRUE ANDM
230-81144333
230-81253052
-0-00108719 | | HEIGHT
5995.71697998
5996.69439697
-0.07741699 | | | AUNCH
HRS 44 | E 0 | - 62 C | | 599 | | | TIME FROM LAUNCH | YDOT
0.11616802E
0.11618601E | ARG PERIGEE
104.93826771
104.89714241
0.04112530 | | . LONG
69.27602005
69.28829384
-0.01227379 | | | |
7E 01 | | | 5. A 51 | | VЕН 1 | | XDDT
-0.19909223E
-0.19909151E | NODE
41.95894861
42.01081991
-0.05187130 | | DECLIN
-12.78545332
-12.79870844
0.01325512 | | 317ER | | 0 0
0 0 | £ 440 | w w 20 | | | RISON
LEDIT | EC | 2
-0.60640835E
-0.60708944E | S (RTCC - TRW)
INCL
32.60250044
32.58305454
0.01944590 | PERIGEE
18.80804443
19.62359619
-0.81555176 | HEADING
59.75136375
59.77785778
-0.02649403 | | υN 3 | . 00 Si | 00 | E HENE | δοñ | - a & % | | APOLLO RTCC COMPAI
OBS MS MAN ACC NO UPD | HRS 44 MIN 12.000 SEC | Y
0,96538000E
0,96596304E | 0SCULATING ELEMENTS (R'
ECCEN
0.63427661 32
0.00006993 0 | APOGEE
12020.73742676
12020.76354980
-0.02612305 | FLT PATH
129.36612701
129.36095428
0.00517273 | | 80 | 20 | 9E 01 | | 9691
1837
5147 | 144
408
3957 | | 05/22/68
CROS 089 | TIME U.T. | X
0.24917858E
0.24917062E | DIFFERENCES IN
SEMI-MAJOR
57486835.50
57489392.50 | PERIOD
384.70979691
384.73545837
-0.02566147 | VEL-MAG
15688.0144
15686.7408
1.27355957 | A-35 DELTA WOOT DELTA VOOT DIFFERENCE BETWEEN RICC AND TRW VECTORS IN UVW COCRDINATES (FT,FT/SEC) DELTA U DELTA W DELTA U -3673. 17492. (FT, FT/SEC) MAGNITUDE OF VECTOR DIFFERENCE DELTA POS DELTA VEL 18835. 3.42 RTCC N X (RTCC-TPW) (RTCC-TRW) 20 PAGE RTCC RTCC RTCC D35000.11 NIM TEX TRI 5177.84527588 TRW 0.14787497E -0.00029755 237,17573929 237,17603683 5176.75421143 TRUE ANDM HEIGHT 8 HRS 52 TIME FROM LAUNCH 010 0.10075712E 104.89540005 72.84139633 104,93502140 ARG PERIGEE YOUT O DAYS LONG 010 -C.23372698E -0.23374186E 41.9607353242.0103030350 -0.04956818 -9.54236770 -9.52671301 XDUT DECLIN NODE APOLLO RTCC COMPARISON MS MAN ACC NO UPD 1EDIT 31TER VEH 00 DIFFERENCES IN OSCULATING ELEMENTS (RTCC - TRW) -0.41416570E -0.41489249E 32,60197592 0.01820469 18.85464478 58.67308426 32,58377123 19.64602661 -0.79138184 58.69653797 PER IGEE HEADING INC. 52 MIN 12,000 SEC 010 0.63429070 0.00006804 12021.67431641 12021.69006348 -0.01574707 129.08737946 129.08277130 0.11107332E 0.11113058E FLT PATH ECCEN APOGEE CRDS 090 80 08S 20 HRS 50 57489823.50 -0.02462769 -2452.00 384,73978043 384.76440811 17110.9148 17109.2314 SEMI-MAJOR 0.22038017E TIME U.T. VEL-MAG 05/22/68 PER 100 4/ 4/68 × DELTA WORT DELTA VOOT 0.90 DIFFERENCE BETWEEN RICC AND TRW VECTORS IN UVW COORDINATES (FT, FT/SEC) DELTA UDOT -1.56 DELTA W 18103. DELTA V -2234. DELTA U -6632. (RTCC-TRW) -1,09106445 -0.01255417 0.01565468 -0.02345371 0.00460815 1,68334961 (FT, FT/SEC) DIFFERENCE DELTA VEL MAGNITUDE OF VECTOR DELTA POS 19409 | PAGE 38 | SEC | E OI RTCC
E OI TRW | RTCC
TRW
(RTCC-TPW) | RTCC
TRW
(RTCC-TRW) | RTCC
TRW
(RTCC-TRW) | |---|----------------------------------|--------------------------------------|--|--|---| | Q. | 0 MIN 11.000 SEC | 200T
0.15402607E
0.15399700E | TRUE ANOM - 244.94035339 R 244.94089508 T -0.00054169 (| α F ∼ | HFIGHT
4291.48197256 R
4292.34826660 T
-0.85639404 (| | | LAUNCH
9 HRS | F 90
E 00 | 224 | | 44 4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | | | TIME FROM LAUNCH
O DAYS 9 HRS | YDOT
0.77311941E
0.77325720E | APG PERIGEE
164.92C77732
104.89306259
0.02771473 | | LONG
77.49645329
77.50550079
-0.00904751 | | | | E 01 | | | | | VEH 1 | | xnot
-0.27418296E
-0.27416334E | NODE
41.97648764
42.00998402
-0.03349638 | | DECLIN
-5.44205081
-5.45439547
0.01234466 | | SITER VEH | | 00
00 | _ | | | | 2EDIT | v | 7
-0.21294635E
-0.21345185E | (RTCC - TRW)
INCL
32.59871292
32.58444309
0.01426983 | PERIGEE
18.99139404
19.63406372
-0.64266968 | HEADING
57.80922985
57.82559776
-0.01636791 | | 00 00 0 | O SE | 010 | EN H | - 4 en en | | | APOLLO RTCC COMPAI
08S MS MAN ACC NO UPD | S 0 MIN 12.000 SEC | Y
0.12307419E
0.12311491E | OSCULATING ELEMENTS
ECCEN
0.63430887
0.63425326
0.00005561 | APUGEE
12023.22570801
12023.21984863
0.00585938 | FLT PATH
128.15637016
128.15295029
0.00341988 | | 80 | 21 HRS | 010 | N 000 | 884
565
681 | 22.8
5.85
8.9.8 | | 05/22/68
CR 0S 091 | TIME U.T. | X
0.18658807E
0.18658570E | DIFFERENCES IN
SEMI-MAJOR
57494953.00
57496887.00 | PERIOD
384.79127884
384.81069555
-0.01941681 | VEL-MAG
18824-3228
18822-7585
1-56420998 | DELTA WORT 1.36 DELTA VOOT DIFFERENCE BETWEEN RTCC AND TRW VECTORS IN UVW COORDINATES (FT,FT/SEC) DELTA U DELTA V DELTA W DELTA UDOT DEL -5266. -1.58 (FT,FT/SEC) MAGNITUDE OF VECTOR DIFFERENCE DELTA POS DELTA VEL 13593. 2.21 | | VEH 1 | |------------|-------------------------| | | 5ITER V | | NOSI | 2EDIT | | COMPARISON | MS MAN ACC NO UPD ZEDIT | | RTCC | ACC | | POLLO RTCC | MAN | | AP | | | | OBS | | | 50 | | 168 | 260 | | 05/22/68 | CROS | | | | | | RICC | 3 | FRW | 3 2 3 | |-----------------------------|---|---|---|---| | SEC | 3E 01 | P TCC
TRW
(RTCC-TRW) | RTCC
TRW
(RTCC-TRW) | RTCC
TRW
(RTCC-TRW) | | H
8 MIN 11.000SEC | ZDOT
0.15697175E
0.15694113E | TRUE ANDM
254.80375481 6
254.80523300
-0.00147820 | | HEIGHT
3342.11813354 F
3342.68777466 -
-0.56964111 | | M LAUNC
9 HRS | 4E 00 | 0.0 | | | | TIME FROM LAUNCH | YDDT
0.40824864E
0.40841921E | ARG PERIGEE
104.90605545
104.89061069
0.01544478 | | LONG
83.82940483
83.8356658
-0.00620174 | | | 01
2E 01 | | | C IO IO | | | XDOT
-0.32155880E
-C.32154782E | NODE
41.99189949
42.00990582
-0.01800632 | | DECLIN
-0.15633570
-0.16380345
0.00746775 | | U | 2
-0.53744200E-02
-0.56316142E-02 | (RTCC - TRW)
INCL
32.59747934
32.58479543 | PERIGEE
19.04266357
19.53988647
-0.49722290 | HEÁDING
57.40285492
57.41557121
-0.01271629 | | S 8 MIN 12.000 SEC | v
0.13115055E 01
0.13117743E 01 | OSCULATING ELEMENTS (R
ECCEN
0.63435533
0.63431133
0.00004400 | APOGEE
12025.85986328
12025.80444336
0.05541992 | FLT PATH
126.28869438
126.28609371
0.00260067 | | TIME U.T.
4/ 4/68 21 HRS | X
0.14695511E 01
0.14695319E 01 | DIFFERENCES IN OS
SEMI-MAJOR
57503110.50
57504453.00
-1342.50 | PERIOD
384.87318039 1
384.88665009 1
-0.01346970 | VEL-MAG
20934.3633
20933.1296
1.23364258 | | | | | Δ | -38 | DIFFERENCE BETWEEN RICC AND TRW VECTORS IN UVW COORDINATES (FT,FT/SEC) DELTA U DELTA W DELTA W DELTA W -3462. -1.14 DELTA WHOT DELTA VOOT -0.01058197 (RTCC-TRW) 0 DAYS 9 HRS 16 MIN 53,000SEC 269.37443542 RTCC X CX 0.15114611E 0.15112300E 269,38501740 TRUE ANDE TIME FROM LAUNCH 00 -0.24562857E 104,88985443 104.88398838 0,00586605 ARG PERIGEE -0.38062673E 01 -0.38064862E 01 42.00494289 42.01243496 XDOT NODE 5 ITER VEHI 0.21945081E 00 0.21947686E 00 DIFFERENCES IN DSCULATING ELEMENTS (RICC - TRW) 32.58244705 32.57602072 0.00642633 APOLLO RICC COMPARISON MS MAN ACC NO UPD 2 EDIT INCL 21 HRS 16 MIN 54.000 SEC 010 0.63440219 0.63435687 0.13279437E ECC. FIN 093 80 OBS 0.96114154E 00 0.96117092E CO 57518695.50 5751 8275.50 420.00 SEM : -MAJOR TIME U.T. 05/24/68 GWMS 093 4/ 4/68 RTCC 010 PER 1GEE 19.53698730 19,94070435 > 12030, 49536133 12029,95336914 385.02964783 385.02544022 APOGEE TRM | | DELTA WOOT | 3.05 | |---|------------|-------| | /SEC) | DELTA VOOT | -1.85 | | COORDINATES (FT, FT | DELTA UDOT | -2.02 | | VECTORS IN UVW | DELTA W | -1405 | | RTCC AND TRE | DELTA V | 964. | | DIFFERENCE RETWEEN RICC AND TRW VECTORS IN UVW COORDINATES (FT, FT/SEC) | DELTA U | 1023. | (FT,FT/SEC) MAGNITUDE OF VECTOR DIFFERENCE DELTA VEL 4.10 DEL TA POS 05/24/68 APOLLO RTCC COMPARISON GWMS 095 51 08S MS MAN, ACC, NO 1JPD 1EDIT 4ITER VEH 1 | RTCC | 3 | RW.) | X X | |---|--|---|--| | ec
01 | RTCC
TRW
(RTCC-TRW) | RICC
TRW
(RICC-TRW) | RTCC
TRW
(RTCC-TRW) | | MIN
0.12
0.12 | TRUE ANDM
288.76056671
288.77305984
-0.01249313 | | HEIGHT
256.03970337
255.92892456
0.11077881 | | 9 HRS 24
17E 01
66E 01 | 288
288
288 | | 1256
1255
0 | | 0 DAYS 9 HRS 2.
YDOT
-0.12619617E 01
-0.12613666E 01 | ARG PERIGEE
104.90458488
104.8988382
0.00570107 | | LONG
109.20886517
109.20767689
0.00118828 | | 6E 01
9E 01 | | | | | XDOT
-0.43343206E
-0.43346199E | NODE
42.00966501
42.00106239
0.00860262 | | DECLIN
17.3653655
17.36652255
-0.00115705 | | е
00
00 | 3 0 - 0 | • ∞ ⊶ | 0 m L | | 0.40709244E | (RTCC - TRW)
INCL
32.57578468
32.57163811
0.00414658 | PERIGEE
18.95080566
19.29110718
-0.34030151 | HEADING
61.99697876
62.00264263
-0.00566387 | | 54.000 SEC
1665E 01
1210E 01 | MENTS | | | | 24 MIN 54.00
0.12331665E
0.12331210E | 0SCULATING ELEMENTS (R
ECCEN
0.6345105 32
0.63451285 32 | AP OGEE
2035, 58593750
2035, 12841797
0,45751953 | FLT PATH
116.51925945
116.51393032
0.00532913 | | HR S
00
00 | | - | | | 4/ 4/68 21
X
0.41708451E
0.41709764E | DIFFERENCES IN
SEMI-MAJOR
57532380.00
57532023.50 | PER 100
385.1 6706 848
385.1 6349030
0.00357819 | VEL-MAG
27234-3076
27234-7073
-0.39965820 | DELTA WOOT 2.89 DELTA VDOT DIFFERENCE BETWEEN RTCC AND
TRW VECTORS IN UVW COORDINATES (FT+FT/SEC). DELTA U DELTA U -775. MAGNITUDE OF VECTOR DIFFERENCE (FT,FT/SEC) DELTA POS DELTA VEL 1051. 4.01 APOLLO RTCC COMPARISON 05/07/68 | | | RTCC | | | Z Z | | TRW) | TRW) | |-------------------------|------------------------------------|---------------------------------------|------------------------------|--------------|-------------|--------------------------|------------------------------|---| | | 00SEC | 37E 00 | . J. P. O | TRE | (RTCC-TRW) | RTCC | (RICC-TRW) | RTCC
TRW
(RTCC-TRW) | | | MIN 59.000SEC | ZDOT
0.88443187E
0.87833948E | TRUE ANDW | 305.89376831 | 0.05792236 | | | HEIGHT
681.14895630
680.98526001
0.16369629 | | | LAUNCH
9 HRS 29 | 01 | 7 | 300 | 0 | | | 683
680 | | | TIME FROM LAUNCH
0 DAYS 9 HRS 2 | Y00T
-0.22132535E
-0.22144534E | ARG PERIGEE | 104.89384842 | -0.16234303 | | | LONG
124.52322578
124.53925610
-0.01603031 | | | | E 01 | • | | | | | | | VEH 1 | | XDOT
-0.45137874E
-0.45141631E | NODE | 41.99822955 | 0.09550095 | | | DECLIN
24.62731171
24.65517378
-0.02786207 | | ITER | | 00 | - | | | | | | | PO LEDIT 7 LTER VEH | | 2
0.49881942E
0.49932869E | (RICC - TRW) | 32,57475090 | 0.01573610 | PER IGEE
19.35562134 | 1,43783569 | HEADING
67.94905663
68.00551510
-0.05645847 | | CN | SEC | 01 | STNE | | | | | | | DBS SS MAN, ACC NO 11PD | S 30 MIN 0. | Y
0.10874189E
0.10871443E | OSCULATING ELEMENTS
ECCEN | 0.63611203 | 0.00001806 | APOGEE
12118.64123535 | 12111.23291016
7.40832520 | FLT PATH
110.55208874
110.57264519
-0.02055645 | | GM4S 097 16 08S | TIME J.T.
4/ 4/58 21 HRS 30 MIN | X
0.39755700E-01
0.39442142E-01 | | 57759051,50 | 25875.50 | PERIOD
387.71612930 | 387.44568253
0.27044678 | VEL-MAG
29670-4207
29659-2627
1.15795898 | | | | | | | | | Δ | _41 | DELTA WDOT 27.84 DELTA VDOT DIFFERENCE BETWEEN RICC AND TRW VECTORS IN UVW COORDINATES (FIFFT/SEC) DELTA U DELTA U DELTA U 21.18 MAGNITUDE OF VECTOR DIFFERENCE (FT,FT/SEC) JELTA POS 36.16 05/07/58 APPLLO RTCC COMPARISON GWAS 338 13 ORS MS MAN ACC NO UPD IEDIT 5 ITER VEH I | | RTCC | 3 | S S | RW.) | |-------------------------------------|--|--|---|--| | <u>ي</u> . | 000 | RTCC
TRW
(RTCC-TRW) | RTCC
TRW
(RTCC-TRW) | RTCC
TRW
(PTCC-TRW) | | MIN 35.000SEC | 2007
0.71615901E
0.71013296E | TRUE ANDM
312.24224472 RTCC
312.24302292 TRW
-0.00077820 (RTC | RTCC
TRW
(RTC) | HEIGHT
523.54235840 RTCC
523.05078125 TRW
0.49157715 (PTC | | p4 | | TRUE
312.3
312.6 | | 523.
523.
0. | | TIME FROM LAUNCH
O DAYS 9 HRS 31 | YDOT
-0.25521557E 01
-0.25619156E 01 | ARG PERIGEE
104.77941418
104.89502561
-0.11561243 | | LONG
130.71909714
130.73763466
-0.01853752 | | | 01 | 4 | | | | | XDOT
-0.45C56607E
-0.45074398E | NODE
42.10512972
41.99296141
0.11216831 | | DECLIN
26.86442161
26.88653183
-0.02211022 | | | 00 | | | | | | 2
0.520235355
0.52056708E | (RTCC - TRW)
INCL
32.59341288
32.57272482
0.02068806 | PERIGEE
18.24554443
17.76028442
0.48526001 | HEADING
70.81106949
70.88139725
-0.07032775 | | SEC | | NTS | | | | 48 31 MIN 36.000 | V
0.10238497E 01
0.10234964E 01 | 1SCULATING ELEME
FCCEN
0.63629060
0.63643859
-0.00014799 | APNGEE
12122, 99583984
12128, 5455323
-5, 55969238 | FLT PATH
108.25897884
108.26147079
-0.00249195 | | TI 4E J.T.
4/ 4/58 21 HRS 31 | X
-0.8363+980E-01
-0.80943330E-01 | DIFFERENCES IN OSCULATING ELEMENTS (R
SEMI-MAJOR ECCEN
57793763.50 0.63629060 32
5781:189.00 0.63643859 32
-13415.50 -0.00014799 0 | aERIDD
387.81503296
387.97021866
-J.15513570 | VEL-WAS
3041 +.5719
30418.1213
-3.4+945289 | | | | | ٨ | 12 | DELTA WONT 33.80 DELTA VOOT DIFFERENCE BETWEEN RTCC AND TRW VECTORS IN UVW COORDINATES (FT,FT/SEC) DELTA II DELTA V DELTA W DELTA UDOT DEL 2984. -9514. -6506. MAGNITUDE DF VECTOR DIFFERFNCE (FT.FT/SEC) JELTA POS DELTA VEL 11936. 36.55 | en
Lin | ည္ | 00 RTCC
00 TRW | | <u>د</u> | ~ | (PICC-TRW) | 9, | (RTCC-TRW) | , | Ų, | | (PTCC-TRW) | |--|-------------------------------------|--|------------------------------|-------------------|-------------|---------------|-------------------------|------------|----------|-------------------|--------------|----------------| | PAGE | I
12 MIN 53.000SEC | 200T
0.55945842E
0.55349836E | | 317,79577255 RTCC | | 0.03414154 (P | RTCC | 8 | | 407-17767334 RTCC | | 1.00573834 (P. | | | TIME FROM LAUNCH
0 DAYS 9 HRS 32 | YDOT
-0.28557412E 01
-0.28562168E 01 | | | | -0.13909748 | | | | | | -0.01850128 | | VEH 1 | | XDOT
-0.44677813E 01
-0.44688463E 01 | | | | 0.10105610 | | | | 28.55274272 13 | | | | ISON
1EDIT 41TER | | 2
0.53411837E 00
0.53428918E 00 | _ | 32.58456612 | | 0.01376200 | PERIGEE
19.14706421 | 1.49218750 | EADING | | .65371799 | -0.06349087 | | APOLLO RTCC COMPARS WS MAN ACC NO 11PD | . 32 MIN 54.000 SEC | Y
0.96529205E 00
0.96481609E 00 | OSCULATING ELEMENTS
ECCEN | 0.63545008 | 0.63641950 | 0.00003058 | APNGEE
2135.38940430 | 8.31774902 | FLT PATH | 106.20196342 | 105.21420574 | -0.01224232 | | 05/07/58
GW4S 035 15 08S | 114F J.T.
4/ 4/38 21 HRS 32 | -0.17803750E 00
-0.1782+189E 00 | | 57835184.50 | 57803382.00 | 29802.50 | 383.22194672 1 | | VEL-4AG | 30932,8503 | 30935,9033 | -3.05297852 | DELTA WOOT 30.32 DELTA VDOT 2.02 DIFFERENCE BETWEEN RTCC AND TRW VECTORS IN UVW COORDINATES (FT,FT/SEC) DELTA 11 DELTA 11 DELTA 0 DELTA 0 17.97 (FT, FT/SEC) MAGNITUJE OF VECTOR DIFFERENCE DELTA POS DELTA VEL 35.30 11653. | | RTCC | TRE | TRW) | TRW | |-------------------------------------|---|---|--|---| | 50SEC | 51E 01
44E 01 | RTCC
TRW
(RTCC-TRW) | RTCC
TRW
(RTCC-TRW) | RTCC
TRW
(RTCC-TRW) | | 1
23 MIN 39.150SEC | 2007
-0.17603461E
-0.17579144E | TRUE ANOM
35.96578455
35.97546768
-0.00968313 | | HEIGHT
293.18652344
293.58139038
-0.39486694 | | L AUNCH | 4E 01
7E 01 | | | 29 | | TIME FROM LAUNCH
0 DAYS 3 HRS 23 | YDOT
-0.49492484F
-0.49489547E | ARG PERIGEE
104.91405201
104.82717896
0.08687305 | | LONG
316.06951904
316.02523041
0.04428864 | | | 8E 01
0E 01 | | 1 | | | | XDOT
-0.13714098E
-0.13772890E | NODE
42.04724836
42.07056189 | | DECLIN
19.85057950
19.89613271
-0.04555321 | | | 2
0.36922089E 00
0.36907070F 03 | (RTCC - TRW)
INCL
32.56029320
32.58024836
-0.01995516 | | HEADING
116.35396194
116.34645367
0.00750828 | | so sec | 00
00 | | | | | RS 23 MTN 40.150 | Y
-0.13522995E
-0.13442402E | OSCULATING ELEMENTS
ECCEN
0.63456158
0.63498295
-0.00042126 | APCGEE
12026.54565430
12048.87768555
-22.33203125 | FLT PATH
76.16769505
76.15821075
0.00948429 | | TIME U.T.
4/ 4/68 15 HRS 23 | X
-0.10109424E 01
-0.10108630E 01 | DIFFERENCES IN SEMI-MAJOR
57498404.00
5756582.50
-68178.50 | PER IOD
384.82593155
385.51058960
-0.68465805 | VEL-MAG
315 57,4971
315 60,0127
-2,51562500 | DELTA WDOT 1.10 DELTA VDOT DIFFERENCE RETWEEN RTCC AND TRW VECTORS IN UVW COORDINATES (FT,FT/SEC) OELTA U -2412. -26.45 MAGNITUDE OF VECTOR DIFFERENCE (FT,FT/SEC) DELTA POS DELTA VEL 24564. 37.02 05/22/68 APPLLO RTCC COMPARISON HIGH SPEED RADAR CUTCFF VECTOR FOLLOWING SPS-1 | | RTCC | | | | TRW | TRW.) | | |---|--|---------------------------------|------------------|-----------------|------------------------|--|---| | M LAUNCH
3 HRS 24 MIN 48.400SEC | ZDNT
-0.18610864E 01
-0.18602690E 01 | TRUE ANOM | 41.08572805 ATCC | 41.19841194 TRW | -0.11268330 (RTCC-TRW) | RTCC
TRW
(RTCC-TRW) | HEIGHT
384.58886719 RTCC
384.95697021 TRW | | TIME FROM LAUNCH
O DAYS 3 HRS 24 | YDOT
01 -0.48973883E 01
01 -0.48963857E 01 | ARG PERIGEE T | | 104.83875179 4 | 0.09670925 | | LONG
320.63778687 38
320.65147781 38 | | | xDOT
-0.10781610E 01
-0.10806434E 01 | NODE | 42.07106543 | 42.06776524 | 0.00330019 | | DECLIN
17.51168871
17.50814652 | | O | 2
0.33427602E 00
0.33424267E 00 | (RTCC - TRW)
INCL | 32,57429934 | 32.58227348 | -0.00797415 | PERIGEE
18.63848877
17.06192017
1.57656860 | HEADING
117.91463947
117.92636395 | | TIME U.T.
4/ 4/68 15 HRS 24 MIN 49.4CO SEC | Y
-0.22888140E 00
-0.22915502E 00 | OSCULATING ELEMENTS (R
ECCEN | 0.63502923 | 0.63499109 | 0.00003814 | APUGEE
12058.99816895
12049.95495605
9.04321289 | FLT PATH
74.23872948
74.19724560 | | TIME U.T.
4/ 4/68 15 HR | X
-0.10344151E 01
-0.10344801E 01 | DIFFERENCES IN DESEMBLANDE | 57602559.00 | 57570295.50 | 32263.50 | PERIOD
385.87203598 1
385.54788589 1
0.32415009 | VEL-MAG
310 91 • 44 38
310 87 • 36 77 | | | | | | | | À. | -45 | DELTA WOOT DELTA VDNT DIFFERENCE RETWEEN RTCC AND TRW VECTORS IN UVW COORDINATES (FT,FT/SEC) DELTA II DELTA V DELTA W DELTA UDOT DEI -2237. -13.66 -0.36810303 (RTCC-TRW) -0.01369095 0.00354218 -0.01172447 0.04148388 4.07617188 MAGNITUDE OF VECTOR DIFFERENCE
(FT.FT/SEC) DELTA POS 16.27 05/22/68 APOLLO RTCC COMPARISON AGC NAV UPDATE PRIOR TO ENTRY | | RTCC | Z ox | TRW) | TRW) | |--------------------------|---------------------------------------|---|--|--| | SEC | 000 | RTCC
TRW
(RTCC-TRW) | RTCC
TRW
(RTCC-TRW) | RTCC
TRW
(RTCC—TRW) | | 45 MIN 35.000SEC | ZDOT
-0.21288579E
-0.21277648E | TRUE ANDM
167.94979858 R
167.95029259 Ti
-C.00049400 (8 | 2 2 2 | HEIGHT
11449.97656250 R'
11449.96154785 TF
0.01501465 (| | 5 HRS 45 | 000 | , et en | | 11.4 | | O DAYS 5 HRS 4 | YDOT
0.65226678E
0.65221610E | ARG PERIGEE
104.87436962
104.88460445
-0.01023483 | | LONG
48.27010822
48.26990700
0.00020123 | | | 010 | 2,,,, | | | | | XD0T
0.12207060E
0.12207416E | NODE
42.04930162
42.03616047
0.01314136 | | DECLIN
-32.52754116
-32.53308916
0.00554800 | | | 010 | _ | | | | EC | 7
-0.23249974E
-0.23253481E | S (RTCC - TRW)
INCL
32.57198620
32.57788277
-0.00589657 | PERIGEE
18.25109863
18.21752930
0.03356934 | HEADING
88.19714260
88.18989277
0.00724983 | | 200 S | 01 | ≥ 25 E | Or OO | N.m.O | | 17 HRS 45 MIN 36.000 SEC | Y
-0.25598263E
-0.25596747E | DSCULATING ELEM
ECCFN
0.63429295
0.63429473
-0.00000179 | APDGFE
12019.09338379
12019.03613281
0.05725098 | FLT PATH
70.77300262
70.77353573
-0.00053310 | | 47 4768 17 HR | X
0.25957712E 01
0.25955993E 01 | DIFFERENCES IN OSCULATING ELEMENTS (RTCC - TRW) SEMI-MAJOR 5748C149.00 0.63429295 57479873.00 0.63429473 32.571988277 276.00 -0.00000179 -0.00589657 | PER IOD
384.64267349
384.63990021
0.00277328 | VEL-MAG
9139.6456
8139.592
0.05340576 | DELTA WOOT DIFFERENCE BETWEEN RTCC AND TRW VECTORS IN UVW COORDINATES (FT,FT/SEC) DELTA U DELTA V DELTA W DELTA V DOT DO.04 MAGNITUDE OF VECTOR DIFFERENCE (FT.FT/SEC) OELTA POS 8766. 0.73 ### APPENDIX B ### SUPPLEMENTARY DATA Information which is too detailed for the body of the report is presented in this appendix. This information includes a summary of radar observations, a summary of station locations, a summary of drag values for various phases of the mission, and a summary of the radar data weights used in ESPOD. Table B-1, a summary of data observations, lists the time of the first valid data point with an elevation above 3 degrees (rise time) and the elevation of this data point (rise elevation), the maximum elevation of the pass, the time of the last valid data point with an elevation above 3 degrees (set time) and the elevation of this data point (set elevation), and the number of valid data points by station and revolution. Table B-2 lists the C-band station locations used in ESPOD. These locations are referenced to the Fischer Ellipsoid of 1960. Table B-3 lists the S-band station locations used in ESPOD. These locations are referenced to the Fischer Ellipsoid of 1960. Table B-4, the drag summary, lists the vehicle configuration, the time interval for which the listed drag value is valid, vehicle weight for this time interval, vehicle cross sectional area, and the value of the drag parameter. Table B-5 lists the values used by ESPOD to weight the radar tracking data from each station as a function of data type and radar type. Table B-1. Summary of Observations | : | :
• | Date | Rise Time,
GMT | Rise *
Elevation | Maximum *
Elevation | Set Time,
GMT | Set *
Elevation | Number of | |---------|------------|-------------|-------------------|---------------------|------------------------|------------------|--------------------|--------------| | Station | Revolution | (yr:mo:day) | (hr:min:sec) | (deg) | (deg) | (hr:min:sec) | (deg) | Observations | | MILS | ന | 68:04:04 | 15:14:36 | 16.97 | 27.65 | 15:18:24 | 2.87 | 3.9 | | PATC | 3 | 68:04:04 | 15:14:42 | 17.07 | 23.20 | 15:18:00 | 4.84 | 34 | | MLAC | 3 | 68:04:04 | 15:15:06 | 23.20 | 27.03 | 15:18:00 | 4.80 | 29 | | BDQC | 3 | 68:04:04 | 15:16:12 | 3.41 | 22.75 | 15:22:36 | 2.72 | 58 | | BDAS | 3 | 68:04:04 | 15:16:12 | 3.44 | 22.74 | 15:22:36 | 2.72 | 58 | | ANTC | 3 | 68:04:04 | 15:18:48 | 2.93 | 9.49 | 15:26:18 | 2.79 | 72 | | ACNS | 8 | 68:04:04 | 15:26:54 | 2.87 | 66.58 | 18:09:06 | 13.09 | 1336 | | ASCC | 'n | 68:04:04 | 15:34:54 | 66.78 | 68.58 | 1829:36 | 12.02 | 1198 | | CROC | Ċ | 68:04:04 | 16:02:06 | 2.82 | 89.17 | 18:32:06 | 24.10 | 971 | | TANC | က | 68:04:04 | 16:43:30 | 70.02 | 74.72 | 16:45:18 | 74.72 | 16 | | CROS | e | 68:04:04 | 17:27:42 | 18.09 | 27.59 | 21:23:30 | 4.04 | 2307 | | GWMS | 6 | 68:04:04 | 21:16:48 | 2.67 | 13.72 | 21:33:41 | 9.25 | 177 | | | | | | | | | | | *These angles have been corrected for refraction effects. Table B-2. C-band Station Locations | Station | Radar Type | Identification | Latitude*
(deg) | Longitude* | Altitude* (deg) | |----------------|------------|----------------|--------------------|------------|-----------------| | Antigua | FPQ-6 | ANT | 17, 14403 | 298. 20714 | 190. 29 | | Ascension | TPQ-18 | ASC | -7.97276 | 345, 59830 | 469. 16 | | Ascension | FPS-16 | ASC | -7, 95151 | 345, 58740 | 360.90 | | Bermuda | FPS-16 | BDA | 32, 34810 | 295, 34620 | 59, 06 | | Bermuda | FPQ-6 | вро | 32,34796 | 295, 34626 | 62.34 | | California | FPS-16 | CAL | 34, 58290 | 239, 43885 | 2119, 42 | | California | TPQ-18 | CLQ | 34,66598 | 239, 41780 | 354, 33 | | Canary Island | MPS-26 | CYI | 27, 76321 | 344, 36519 | 551, 18 | | Cape Kennedy | FPS-16 | CNV | 28, 48177 | 279, 42349 | 45.93 | | Carnarvon | FPQ-6 | CRO | -24.89740 | 113, 71608 | 203, 41 | | Eglin | FPS-16 | EGL | 30, 42177 | 273. 20189 | 91.86 | | Grand Bahama | FPS-16 | GBI | 26, 61579 | 281, 65215 | 45.93 | | Grand Bahama | TPQ-18 | GBI | 26.63636 | 281, 73229 | 39, 37 | | Grand Turk | TPQ-18 | GTI | 21.46289 | 288, 86789 | 91, 86 | | Hawaii | FPS-16 | HAW | 22, 12209 | 200, 33462 | 3740.16 | | Merritt Island | TPQ-18 | MLA | 28, 42486 | 279, 33560 | 39, 37 | | Patrick | FPQ-6 | PAT | 28, 22655 | 279, 40017 | 49. 21 | | Pretoria | MPS-25 | PRE | -25.94373 | 28, 35849 | 5334, 65 | | | | | | .• | | *All quantities are referenced to the Fischer Ellipsoid of 1960. Table B-2. C-band Station Locations (Continued) | Altitude* | 19251 | 16.40 | 4337, 35 | 00 | 4041.77 | 495, 41 | | | |------------|----------------|---|--------------|-------------|------------|-------------|---------|--| | Longitude* | (gap) | 285, 49586 | 47 31505 | 00 00 00 FF | 253, 63044 | 136, 83699 | | | | Latitude* | (deg) | 24, 11883 | 00000 | -19,000/9 | 32, 35822 | 30 81973 | 20.00 | | | | Identification | 155 | 100 | TAN | WHS | 70.11 | W OIM | | | | Radar Type | ,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | FP3-10 | FPS-16 | 16 POT | 2 | FPS-16 | | | | Station | | San Salvador | Tananarive | | White Sands | Woomera | | *All quantities are referenced to the Fischer Ellipsoid of 1960. Table B-3. USBS Station Locations | Station | Antenna | Identification | Latitude*
(deg) | Longitude*
(deg) | Altitude*
(deg) | |----------------|---------|----------------|--------------------|---------------------|--------------------| | Antigna | 301 | ANG | 17.01692 | 298, 24715 | 141.08 | | Ascension | 301 | ACN | -7, 95506 | 345, 67242 | 1843.83 | | Bermuda | 301 | BDA | 32, 35129 | 295, 34182 | 68.90 | | Canary Island | 30' | CYI | 27.76454 | 344, 36519 | 567. 59 | | Canberra | 851 | CNB | -35, 58474 | 148.97658 | 3766. 40 | | Carnarvon | 30' | CRO | -24.90759 | 113, 72425 | 190. 29 | | Goldstone | 851 | GDS | 35, 34169 | 243.12670 | 3166.01 | | Grand Bahama | 30' | GBM | 26. 63286 | 281, 76234 | 16.40 | | Guam | 301 | GWM | 13, 30924 | 144, 73441 | 416.67 | | Guaymas | 301 | GYM | 27.96321 | 249, 27915 | 62.34 | | Hawaii | 30' | HAW | 22, 12490 | 200, 33501 | 3772.97 | | Madrid | 851 | MAD | 40, 45536 | 355, 83261 | 2706.69 | | Merritt Island | 301 | MIL | 28, 50827 | 279, 30658 | 32. 81 | | Texas | 301 | TEX | 27.65375 | 262, 62153 | 32. 81 | *All quantities are referenced to the Fischer Ellipsoid of 1960. Table B-4. Drag Summary | | Time] | Time Interval | | | | |------------|---------------------|--------------------|------------------------|-----------------------|---| | Vehicle | From $(hr:min:sec)$ | To
(hr:min:sec) | Vehicle Weight
(1b) | Vehicle Area
(ft²) | $\frac{\text{Drag}}{(\text{ft}^2/\text{Slug})}$ | | CSM | 15:23:28.9 | 21:36:57.6 | 25, 642 | 129.35 | 0.1614 | | $_{ m CM}$ | 21:36:57.6 | Entry | 12, 505 | 129.35 | 0.3310 | | | | | | | : | Table B-5. Radar Data Weighting | Type of Radar | 60 ft: 0.0258 deg: 0.0258 deg | TPQ-18 and FPS-16 90 ft: 0.0354 deg: 0.0354 deg | 180 ft: 0.1720 deg: 0.1720 deg | USB: 30-ft antenna 90 ft: 0.1375 deg: 0.1375 deg 85-ft antenna | untenna 0.2 cycle/sec | |----------------|-------------------------------|---|--------------------------------|--|------------------------------------| | Data Type Type | R:A:E FPQ-6 | R:A:E TPQ-18 | R:A:E MPS-26 | R:X:Y USB: 3 | Doppler (2 way) USB: 30-ft antenna | #### APPENDIX C #### METHODS OF ANALYSIS AND PROGRAMS This Appendix outlines the methods of postflight trajectory analysis and describes the major programs used in this work. # Orbit Reconstruction Programs Low-speed tracking data for a mission are received from MSC on a magnetic tape. The data tape is input into the Master Tape Generator (MATAG) Program which reformats the data into a format that is compatible with the TRW orbit determination program (ESPOD) and generates a time-ordered master data tape. The master data tape is then input into the ESPOD Data Generator (EDG)
Program which edits the master data tape and outputs the data in the form of tape or cards. The ESPOD Program determines the state vector for a spacecraft at a given epoch and the covariance matrix of uncertainties. This is accomplished by an iterative process which minimizes the weighted sum of the squares of the residuals, where the residuals are the difference between the actual observations and the computed observations based upon a current estimate of the spacecraft trajectory. ESPOD also has the capability of including in the solution vector such parameters as drag (C_dA/2m), radar errors, and station location errors. There exist two versions of ESPOD, both of which have the general capability described above. The USB ESPOD is distinguished by the fact that it can process RAER, RXY, and doppler radar tracking data. It does not, however, have the capability of modeling burns. The IGS ESPOD, in contrast, can only process RAER radar tracking data even though it does have two burn models, the LOP burn model and the IGS burn model. The LOP burn model uses an analytic thrust acceleration model - constant thrust oriented along the roll axis. Thrust/mass ratio, and orientation of roll axis are some of the parameters that can be included in the solution vector. The IGS burn model uses an acceleration burn tape based on telemetered data which is then input into ESPOD. Accelerometer and gyro errors may be modeled or included in the solution vector. After a best estimate of the trajectory (BET) is obtained in ESPOD, a trajectory tape is generated and input into the RTCC Comparison Program. This program compares the RTCC trajectory and the BET by means of state vector differences exhibited in various coordinate systems. The total difference in position and velocity is also listed. # Guidance and Navigation Programs The spacecraft trajectory during thrusting periods after S-IVB separation is reconstructed from inertial measurement data telemetered from the guidance and navigation system. Before an accurate reconstruction can be undertaken, it is necessary to determine the systematic errors present in the guidance system hardware so that appropriate corrections to the IMU data can be made. This procedure for trajectory reconstruction may be divided into three general areas. ## Data Processing The three sources of trajectory data used in Apollo IMU evaluation must be formated so that they are compatible with the trajectory computing programs. - a) The G&N Processor Program is used to edit Apollo downlink telemetry data and produce a regular ephemeris of measured position, velocity, and acceleration. - b) The S-IVB Processor Program is used to interpolate the S-IVB IU trajectory to the AGC/LGC time base and rotate the data into appropriate coordinate frames. - c) The General Data Processor Program is used to smooth, interpolate, and rotate high-speed tracking data (GLOTRAC, C-band) to an appropriate time base and coordinate frame. ## IMU Evaluation Determination of the systematic errors present in the Apollo guidance system is based primarily on comparisons of the trajectory (sensed and total) as measured by the AGC/LGC, with S-IVB and GLOTRAC trajectories. The boost phase of any mission is the most important for this analysis because of the relatively long time duration with high acceleration levels. The two principal tools used in IMU error analysis are discussed in the following paragraphs. - a) The Error Analysis Program (EAP) is used to compute the partial derivatives of sensed position, velocity, and acceleration (3Ps/3Ek, 3Vs/3Ek, 3As/3Ek) with respect to each of the error terms, E_k, in the Apollo IMU error model. The input which drives the EAP is the edited ephemeris of sensed acceleration obtained from the G&N Processor Program. - b) The Velocity Comparison Program (VELCOMP) corrects the Apollo sensed trajectory profile using the EAP partials and the best estimates of the IMU errors, E_k . It then compares the corrected trajectory (in both sensed and total coordinates) with external reference trajectory data (S-IVB and GLOTRAC). The recovered set of IMU errors must, of course, be compatible with the preflight test history of the onboard guidance system and with the known trajectory constraints during later phases of the mission. ## Trajectory Reconstruction During thrusting periods for which limited external trajectory data are available, a different technique for trajectory reconstruction is employed. This method relies on two external inputs: (1) the set of IMU hardware errors determined from ascent analysis and (2) an accurate state vector, (P_0, V_0) , from the ESPOD program to initialize the total trajectory. The Trajectory Reconstruction Program is driven with the outputs of the G&N Processor and EAP Programs. At time, t_i , the total corrected velocity is computed from: $$v_{Ti} = v_o + v_{si} - \sum_{K} \frac{\partial E^k}{\partial E^k} E^k + v_{Gi}$$ This quantity is integrated to obtain total position, P_{Ti} , which is extrapolated to time, t_{i+1} , for the next computation of velocity due to gravity, (V_{Gi+1}) .